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Abstract

The weights of a neural network are typically initialized at random, and one can
think of the functions produced by such a network as having been generated by
a prior over some function space. Studying random networks, then, is useful for
a Bayesian understanding of the network evolution in early stages of training. In
particular, one can investigate why neural networks with huge numbers of param-
eters do not immediately overfit. We analyze the properties of random scalar-input
feed-forward rectified linear unit architectures, which are random linear splines.
With weights and biases sampled from certain common distributions, empirical
tests show that the number of knots in the spline produced by the network is equal
to the number of neurons, to very close approximation. We describe our progress
towards a completely analytic explanation of this phenomenon. In particular, we
show that random single-layer neural networks are equivalent to integrated ran-
dom walks with variable step sizes. That each neuron produces one knot on
average is equivalent to the associated integrated random walk having one zero
crossing on average. We explore how properties of the integrated random walk,
including the step sizes and initial conditions, affect the number of crossings. The
number of knots in random neural networks can be related to the behavior of ex-
treme learning machines, but it also establishes a prior preventing optimizers from
immediately overfitting to noisy training data.

1 Introduction

In recent years, neural networks have experienced a resurgence in practical data science applications,
and have been responsible for improvements in these applications by leaps and bounds. The power
of neural networks is in part an effect of the well-known universal approximation theorems (Cybenko
1989; Hornik 1991; Hornik et al. 1989; Sonoda and Murata 2015), which essentially allow neural
networks to model any vector-valued continuous function arbitrary well. Despite the great success
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stories attributed to neural networks, however, the analytical understanding of their successes have
not been understood as well as their applicability and use in specific applications. Even the universal
approximation theorems do not specify the rate that neural networks train on data, given the network
size and various training data parameters.

Neural networks with commonly-employed rectified linear unit activation functions are simply linear
splines. Thus, one of many ways to measure the complexity or expressivity of a neural network is
to count the number of spline knots or linear pieces in the entire domain of the neural network
(Montúfar et al. 2014; Pascanu et al. 2014; Raghu et al. 2016; Arora et al. 2016). Knowledge of the
maximum or expected number of knots in a neural network of a given width (i.e., neurons per layer)
and depth (i.e., layers) is useful in neural network design. If a designer had a priori knowledge of
the desired model complexity, then he could ensure that the neural network size is sufficient large.

Whereas we have previously derived a tight upper bound on the number of knots in neural networks
(Chen 2016), we now explore the number of knots in networks with random weights and biases.
This type of analysis is admittedly uncommon, and the motivations unintuitive. Nevertheless, ran-
dom neural networks provide a better venue for rigorous statistical analysis than application-specific
networks. Furthermore, there are at least three ways that the behavior of random neural networks
can ultimately be related back to that of neural networks trained on actual data.

First, random neural networks are more representative of “average-case” neural networks than the
“best-case” networks meeting the upper bound on the number of knots. We showed that to construct
a neural network with the maximum number of knots, every affine transformation in every layer
except the output must be a maximally high-wavenumber sawtooth wave (Chen 2016). Such a
construction is useful in providing a “brick-wall” limit on the expressivity of neural networks, but is
extremely unlikely to be encountered in practice. In fact, in a companion paper (Chen et al. 2016),
we show that optimizers tend to learn low-wavenumber content before high-wavenumber content
in underlying functions, and that very high wavenumbers may never be fully learned. On the other
hand, random neural networks are not artificially constructed to have maximally high wavenumbers,
and—at least roughly speaking—are more representative of real data.

Second, we will later show that even when neural networks are trained on actual data, the weights
and biases are typically random or close to random in the early stages of the training. Therefore,
understanding the behavior of random neural networks is important for analyzing the process of
optimizing neural networks. In particular, commonly-employed neural network optimizers typically
do not immediately overfit neural networks to noisy training data. It will become apparent that
random optimization establishes a prior on the function space on which trained neural networks
reside, and that the smoothness of random neural networks prevents overfitting.

Finally, random weights are a crucial element in the variant of neural networks known as extreme
learning machines (Huang et al. 2006). In extreme learning machines, input weights are chosen
randomly, and output weights following a single hidden layer of neurons are solved by least-squares.
Extreme learning machines are very simple and can be trained easily. They have been employed
successfully in simple problems (Huang et al. 2015), and represent a real-life use of random neural
networks. Further improvements may be possible, for instance, by designing a large number of
random networks and applying L1 regularization to combine them.

This paper is fairly exploratory in nature. As such, it covers a few different topics related to random
neural networks. The key focus of this paper is the empirical result that the number of knots in a
scalar-input random neural network is simply the number of neurons in the network, to very close
approximation. This is in contrast to the tight upper bound, which for n neurons in each of l layers is
approximately nl (Chen 2016). Although we do not rigorously derive the expected number of knots
in random neural networks, we outline our progress toward this objective. Complete results are
given where they are available, but many other aspects are more conjectural, empirical, or otherwise
open for further exploration.

The topics and sections of this paper are as follows. In Section 2, we briefly review the neural
network architecture. The key empirical result on the number of knots in random neural networks is
given in Section 3, though further numerical experiments are discussed later as they become relevant.
Next, Section 4 analyzes the behavior of random neural networks from a few different perspectives.
We consider the relation between knots in neural networks and roots of the affine transformations
within neurons, and we analyze the effects of different probability distributions on the number of
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knots. Afterwards, we draw an equivalence between random neural networks and variable-step-size
integrated random walks in Section 5. We demonstrate an equivalence between the number of knots
per neuron and the number of zero crossings in the associated integrated random walk (Sinai 1992;
Groeneboom et al. 1999; Denisov and Wachtel 2015). The majority of this section explores how
properties of the associated integrated random walk, such as the step sizes and initial conditions, are
related to the number of zero crossings. Section 6 then relates random neural networks to the early
stages of neural network training, and discusses how the weight and bias distributions we explore
in this paper actually appear during optimization processes. Finally, we summarize our results and
comment on directions for future research in Section 7.

2 Brief description of neural networks

In this section, we quickly review the basic definitions and properties of the neural network archi-
tecture. We intentionally keep this section concise. A more detailed description and accompanying
figures can be found in a companion paper (Chen 2016), and an overview of neural networks and
other machine learning techniques can be found in various texts.

For this paper, we will use the commonly employed rectified linear unit σ(x) = max(0, x) as
the nonlinear activation function in our neural networks. To construct a single-layer Rq → Rp
neural network with n neurons, we select input weights w1k ∈ Rq and input biases b1k ∈ R for
k = 1, . . . , n, and output weights w2k ∈ Rn and output biases b2k ∈ R for k = 1, . . . , p. Using
the shorthand notation v := [v1 · · · vn] to indicate the hidden layer outputs, the single-layer neural
network maps x ∈ Rq to y = [η1 · · · ηp] ∈ Rp by

vk := σ(w1k · x + b1k), k = 1, . . . , n, (1a)
ηk := w2k · v + b2k, k = 1, . . . , p. (1b)

A deep neural network is conceptually identical, except that a serial chain of hidden layers exists
between the input and the output. Now, we consider l hidden layers, with ni neurons in layer
i = 1, . . . , l. As before, we assign input weights w1k ∈ Rq and input biases b1k ∈ R, now for
k = 1, . . . , n1. Furthermore, we choose additional weights wik ∈ Rni−1 and biases bik ∈ R for
layers i = 2, . . . , l, and for k = 1, . . . , ni. Finally, we assign output weights wl+1,k ∈ Rnl and
output biases bl+1,k ∈ R for k = 1, . . . , p. Let us use the shorthand notation vi := [vi1 · · · vini ].
The deep neural network is then given by

v1k := σ(w1k · x + b1k), k = 1, . . . , n1 (2a)
vik := σ(wik · vi−1 + bik), i = 2, . . . , l, k = 1, . . . , ni (2b)
ηk := wl+1,k · vl + bl+1,k, k = 1, . . . , p. (2c)

Neural networks with rectified linear unit activations are linear splines—that is, they are piecewise
linear functions with a finite number of pieces. For i = 1, . . . , l + 1 and with v = x or vi−1, every
affine transformation wik ·v+bik combines the knots in the scalar components of v. The application
of σ to wik · v + bik then retains knots at inputs xj if wik · v(xj) + bik > 0, and eliminates knots
at inputs xj if wik · v(xj) + bik < 0. Furthermore, wherever wik · v(x) + bik = 0, new knots are
created at those values of x. Thus, there is a natural equivalence between knots in neural networks
and roots of affine transformations: wherever a knot exists in a neural network, some neuron in some
layer has a root there in its affine transformation.

Furthermore, as discussed in Chen (2016), the output dimension p nominally has no effect on the
number of knots in a neural network. The output layer (1b, 2c) does not contain rectified linear units,
so all knots must be created in the hidden layers. The only degenerate case that may arise is that any
layer, including the output layer, may theoretically construct affine transformations such that v(x)
has a discontinuity in some gradient component, but wik · v(x) does not. We will not be concerned
with this possibility in this paper, because such an occurrence almost surely will not happen if the
weights and biases are randomly chosen from continuous distributions.

We will primarily consider the R→ R single-layer neural network

y(x) =

n∑
j=1

w2jσ(w1jx+ b1j) + b2, (3)
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Figure 1: Example random scalar-valued single-layer neural networks (3), with n = 10 (left), 100
(middle), and 1,000 (right). Three examples for each size are shown in rows. Not all the knots are
visible because the axes are scaled to highlight the behavior near the origin.

which is obtained directly from (1) with a slight change in notation. Such a simple model, admit-
tedly, is not typically employed in practice; neural networks are commonly Rq → Rp functions.
It does allow certain analyses, however, that would otherwise be far more difficult. On one hand,
our results apply immediately to output dimensions p > 1 for the aforementioned reasons. On the
other hand, the extension to input dimensions q > 1 introduces multidimensional polytopes, and
the use of deep networks with l > 1 layers raises additional complexities that have not yet been
considered. The extension of our results to generic vector-valued deep neural networks remains a
future objective.

3 Empirical results

To motivate the discussion on random neural networks, we first demonstrate some examples of
scalar-valued single-layer neural networks (3). Figure 1 shows three examples each for three differ-
ent neural network widths n, where weights and biases are drawn independently from N(0, 1). As
discussed in Chen (2016), the knot locations for this single-layer neural network model are simply
xj = −b1j/w1j for j = 1, . . . , n. Thus, with n neurons in the single hidden layer, there are almost
surely n unique knots in the model.

With ten neurons in the random network (Figure 1, left column), the linear spline is fairly coarse,
as the model contains exactly ten knots. With 100 and particularly with 1,000 neurons (Figure 1,
middle and right columns), however, the distribution of knots is somewhat dense. In the latter case,
the distribution is so dense that nearly every pixel in the right column plots contains a knot. We
observe that by and large, the random neural networks are qualitatively fairly smooth. This topic
will be related to integrated random walks and revisited in Section 5.

Our chief numerical experiment, which motivates much of the remainder of this paper, is the fol-
lowing. We consider R→ R neural networks with l = 1, . . . , 5 hidden layers; in each, we consider
a number of knots n = 10, 20, 40, 60, 80, 100, 200 in every layer. For every one of the 35 different
neural network sizes, every scalar weight and bias was drawn independently from U(−1, 1). Then,
for four such trials with this network size, the number of knots in the entire domain x ∈ R was
counted by keeping track of the linear splines input into each neuron.
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Figure 2: The number of knots m for different numbers of layers l and neurons per layer n. Each
dot shows a trial, and the lines m = nl are also shown.

The number of knots m in the resulting random neural networks is shown in Figure 2. The main
empirical result is stated as follows.
Conjecture 1. In an R→ R neural network with l layers, n neurons per layer, rectified linear unit
activation functions in each neuron, and weights and biases drawn independently from U(−1, 1),
the number of knots in the input–output model is

m ≈ nl. (4)

That is, the number of knots is approximately equal to the number of neurons. For this limited data
set, the mean of (m−nl)/(nl)—the error in (4), normalized by the number of neurons—is 8.5·10−4,
and the standard deviation is 9.4 · 10−2. Although (4) is an extraordinarily simple observation, the
proof of this conjecture has been surprisingly evasive. The main objective from this point forward
is to seek an analytical explanation for (4). We do not rigorously prove this result in this paper, but
we detail our progress and discuss some expository ideas that may lead to a proof.

We also remark that for an R → Rp neural network, the number of scalar weights and biases is
approximately (p+2)n+(l−1)n2 (Chen 2016). Although for l ≥ 3, this is much less than the tight
upper bound on the number of knots, which is approximately nl (Chen 2016), it is still typically
much greater than the nl knots observed in random neural networks.

4 Analysis of random neural networks

As a first step in understanding the behavior exhibited in Figure 2, we consider in Section 4.1 how
knots are created and eliminated in each hidden layer. Next, in Section 4.2 we review a transforma-
tion that allows the neural network (3) to be written so that all rectified linear units face the positive
x direction. Using this transformation, Section 4.3 discusses the number of knots in random neural
networks for different probability distributions.

4.1 Relating knots and roots

It was shown in Chen (2016) and Section 2 that each neuron can retain, eliminate, or create knots,
depending on the value of the affine transformation wik · vi−1(x) + bik to which the rectified linear
unit is applied. Regarding the collective behavior of neurons, one can further show the following.
Lemma 1. Consider a deep neural network with weights and biases independently selected from
continuous distributions that are symmetric about zero. For hidden layer i = 2, . . . , l, in the limit
that ni →∞, every knot of vi−1(x) is almost surely also a knot of vi(x).

Proof. The sketch of the proof is fairly simple. The output of neuron k in hidden layer i is given
by (2b). If the weights and biases are selected independently from continuous distributions that are
symmetric about zero, then for each knot xj among the elements of vi−1, there is no preference in
the sign of wik · vi−1(xj) + bik, besides that it is almost surely not zero. Furthermore, there is a
zero probability that this affine transformation will degenerately remove discontinuities, such that
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vi−1 has a knot at some xj but wik ·vi−1 does not. Therefore, for each knot xj , the probability that
wik ·vi−1(xj) + bik < 0—and thus the knot xj is eliminated by the application of a rectified linear
unit—is exactly 1/2.

Since each neuron’s weights and biases are chosen independently, the probability that a knot is
eliminated by a neuron’s rectified linear unit is independent of all other neurons. Note that for a
knot to be absent among the outputs of layer i, it must be eliminated by every neuron in that layer.
The probability of such an occurrence is 2−ni . Finally, if there are mi−1 knots in vi−1, then the
probability that all mi−1 are retained in vi is

Ppreserved = (1− 2−ni)mi−1 , (5)

which approaches unity as ni →∞.

Corollary 1. Supposing that ni = n for all i, Lemma 1 holds even if mi−1 = n(i − 1), as is
empirically observed.

Proof. In this case, the probability that all layer i− 1 knots are preserved in the layer i outputs, for
n→∞, is

lim
n→∞

Ppreserved = lim
n→∞

(1− 2−n)n(i−1) (6a)

= lim
n→∞

exp(n(i− 1) ln(1− 2−n)). (6b)

Using the change of variables given by ε = 2−n,

lim
n→∞

Ppreserved = lim
ε→0

exp(−(i− 1)(log2 ε) ln(1− ε)). (7)

Expanding ln(1− ε) in a Taylor series,

lim
n→∞

Ppreserved = lim
ε→0

exp
(
(i− 1)(log2 ε)

(
ε+O

(
ε2
)))

(8a)

= 1. (8b)

Corollary 2. With probability greater than 1/2, all layer i − 1 knots are preserved in the layer i
outputs if

ni > log2mi−1 − log2 ln 2 +O
(
m−1i−1

)
. (9)

For the conditions in Corollary 1, the equivalent inequality is

n− log2 n+O(n−1) > log2(i− 1)− log2 ln 2 +O((i− 1)−1) (10)

Proof. By solving Ppreserved > 1/2 for ni, we obtain

ni > − log2(1− 2−1/mi−1). (11)

Equation (9) is then obtained by computing the series solution for (11) with large mi−1. Equa-
tion (10) is then derived from (9) by setting mi−1 = n(i− 1).

Lemma 1 and the corollaries have an important implication in the analysis of knots in random neural
networks. Essentially, if ni is large for all i = 2, . . . , l—which is typically the case—then no knots
are expected to be eliminated. In fact, Corollary 2 shows that ni does not even need to be that large:
it only needs to scale logarithmically by mi−1 or i − 1. Thus, for decently sized ni, the number of
knots in the input–output relation of the neural network is equal to the number of knots created by
any neuron in the entire architecture. That is, not only do we empirically expect that random neural
networks have nl knots, but also, we expect that nl knots are created among all neurons.

To proceed further with our analysis, it is now natural to shift our focus from the entire neural
network to the individual neurons within. As previously mentioned, with l = 1 hidden layer, (4)
is met almost surely: each neuron creates exactly one knot, and the probability that two neurons
would create knots at the same location xj is zero for continuous distributions. Yet, even with
incrementally increasing l, empirical evidence still shows that (4) is true to close approximation, if
not exactly. Thus, we can use induction to posit the following stronger statement.
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(a) (b) (c)

Figure 3: (a) A random single-layer neural network model (3). (b) The decomposition of (a) into
individual rectified linear units (blue) and the bias b2 (red). (c) The equivalent model (12) with
forward-facing rectified linear units (green) and a line (purple).

Conjecture 2. For the conditions in Lemma 1, the expected number of knots created by every neuron
k = 1, . . . , ni in every layer i = 1, . . . , l is unity.

From this conjecture, another immediately follows from the construction of the neuron.
Conjecture 3. For the conditions in Lemma 1, the expected number of roots of the affine transfor-
mation wik · vi−1(x) + bik, in every neuron k = 1, . . . , ni in every layer i = 1, . . . , l (with x in
place of vi−1(x) for i = 1), is unity.

From this point on, our focus will lie primarily on Conjecture 3 and the conditions for which it
appears to be true. Additionally, we will focus specifically on the affine transformation in (3), which
can be interpreted as the input into any neuron in the second hidden layer. Analyses for further
hidden layers may be pursued in future research.

4.2 Equivalent form with forward-facing rectified linear units

Consider the single-layer scalar-valued neural network in (3) (e.g., Figure 3(a)). As discussed in
Chen (2016), the activated ray in the rectified linear units—that is, the part of σ(x) for x ≥ 0—can
be oriented toward any of the four quadrants of the x–vk plane (e.g., Figure 3(b)). For the purpose
of analyzing the behavior of (3), it is useful to have all rectified linear units activate in quadrants I
or IV (e.g., Figure 3(c)), so that rectified linear units can be successively turned on as x is traced
from −∞ to∞, and no rectified linear units are turned off. The transformation that expresses the
rectified linear units this way is presented as Lemma 1 of Chen (2016), which we restate here with
slight modifications.
Lemma 2. The neural network model (3) is equivalently

y(x) =

n∑
j=1

sjσ(x− xj) + c1x+ c0, (12)

where

c1 :=
∑

1≤j≤n
w1j<0

w2jw1j , c0 :=
∑

1≤j≤n
w1j<0

w2jb1j + b2, (13a)

sj := w2j |w1j |, xj := − b1j
w1j

, j = 1, . . . , n. (13b)

All rectified linear units in (12) face the positive x direction (or “forward”).

Proof. The proof is given in Chen (2016).

Besides making all rectified linear units in this transformation face forward, the utility of (12) is that
the neural network is conveniently decomposed into easily understandable parts. The coefficient sj
describes the activated slope of the jth rectified linear unit, for which the knot is located at x = xj .
Furthermore, the coefficients c1 and c0 describe the line that must be added to the sum of rectified
linear units to produce an equivalence with the original model (3). For the remainder of the paper,
we will assume that w1j , b1j , and w2j are sorted so that x1 ≤ · · · ≤ xn.
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Given (12), it is natural to ask how the parameters (13) are correlated with each other, supposing that
w1j , bij , and w2j are independent for all j = 1, . . . , n, and the distributions are symmetric about
zero. Some pairs of parameters are uncorrelated by inspection. For instance, consider c0 and c1.
These two parameters must have distributions that are also symmetric about zero. Although they
share w2j in common, their signs are independent because of the distinction between w1j in c1 and
b1j and b2 in w0j . Therefore, with E(·) indicating the expected value, E(c0c1) = 0, and c0 and
c1 must be uncorrelated. Likewise, each sj on its own is also uncorrelated from c0, by the same
argument of distributions being symmetric about zero.

For other pairs whose relations are less obvious, the correlation is most readily computed using the
correlation coefficient. We will not tabulate the correlation between each pair of parameters, but let
us consider two examples. First, the correlation between sj and xj , by definition, is

corr(sj , xj) =
E((sj − E(sj))(xj − E(xj)))√

Var(sj)Var(xj)
(14a)

=
E(sjxj)√

Var(sj)Var(xj)
(14b)

=
E(−w2jb1jsgn(w1j))√

Var(sj)Var(xj)
(14c)

= 0. (14d)

Second, the correlation between each sj and c1 is

corr(sj , c1) =
E((sj − E(sj))(c1 − E(c1)))√

Var(sj)Var(c1)
(15a)

=
E(sjc1)√

E(s2j )Var(c1)
(15b)

=

E

(
w2j |w1j |

∑
1≤k≤n
w1k<0

w2kw1k

)
√
E((w2jw1j)2)Var(c1)

. (15c)

Since the weights are independent and their distributions are symmetric about zero, there is a 1/2
chance that w1j < 0 and hence the index k = j appears in the sum. The other half of the time,
k 6= j for all summands, and w2j |w1j | is independent from the sum. Thus,

corr(sj , c1) =
E(−(w2jw1j)

2)

2
√
E((w2jw1j)2)Var(c1)

(16a)

= −1

2

√
E((w2jw1j)2)

Var(c1)
. (16b)

By the central limit theorem, Var(c1) → ∞ as n → ∞, while E((w2jw1j)
2) remains fixed. Thus,

limn→∞ corr(sj , c1) = 0.

4.3 Probability distributions

In Section 3, numerical experiments showed that for w1j , b1j , w2j , b2 ∼ U(−1, 1) independently,
the resulting neural network has a number of knots approximately equal to the number of neurons.
Conjecture 3 then interpreted this to posit that the affine transformations in neurons are expected
to have one root. Here, we specifically examine the affine transformation (3) in the second-layer
neurons for different probability distributions.

4.3.1 Empirical root counts

In Table 1, we numerically compute the number of roots of (3), for different probability distributions
of the weights and biases. In these experiments, we select the weights and biases independently,
each from one of four common distributions: the standard normal N(0, 1), the uniform distribution
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Table 1: The number of roots of (3) for different weight and bias distributions, and in different
domains, with n = 104. Each reported value is the average over 2 · 104 trials. A different set of
trials is run for the two domains.

distributions roots in
w1j b1j w2j b2 R (x1, xn)

N(0, 1) N(0, 1) N(0, 1) N(0, 1) 0.9967 0.9918
N(0, 1) N(0, 1) N(0, 1) 0 0.9954 1.0073
U(−1, 1) U(−1, 1) U(−1, 1) U(−1, 1) 1.0064 0.9886
U(−1, 1) U(−1, 1) U(−1, 1) 0 0.9940 0.9967
N(0, 1) N(0, 1) {−1, 1} 0 0.9992 1.0015
N(0, 1) N(0, 1) {−1, 1} N(0, 1) 1.0064 1.0038
U(−1, 1) U(−1, 1) {−1, 1} 0 1.0081 1.0114
U(−1, 1) U(−1, 1) {−1, 1} U(−1, 1) 0.9904 0.9976
N(0, 1) U(−1, 1) {−1, 1} 0 1.0040 1.0133
U(−1, 1) N(0, 1) {−1, 1} 0 0.9975 1.0021
{−1, 1} N(0, 1) N(0, 1) 0 1.0018 0.8341
{−1, 1} U(−1, 1) U(−1, 1) 0 1.0022 0.6634
N(0, 1) {−1, 1} N(0, 1) 0 0.9975 1.0002
U(−1, 1) {−1, 1} U(−1, 1) 0 1.0086 1.0027
N(0, 1) {−1, 1} {−1, 1} 0 1.0044 0.9960
U(−1, 1) {−1, 1} {−1, 1} 0 1.0022 1.0070
{−1, 1} N(0, 1) {−1, 1} 0 1.0039 0.8464
{−1, 1} U(−1, 1) {−1, 1} 0 0.9929 0.6678

U(−1, 1), Bernoulli trials {−1, 1} with 1/2 probability each, and the point mass at zero. We then
count the number of roots in R and in (x1, xn) (i.e., between the most negative and the most positive
knots only). For each set of distributions, 2 · 104 trials are run on single-layer neural networks with
n = 104 neurons, and the mean number of roots is reported.

The empirical number of roots is very simple: in all cases, the mean number of roots in all of R is
roughly one, which is in excellent agreement with Conjecture 3. This holds not only in very simple
cases such as the last entry of Table 1—where knot locations and slopes are simply xj ∼ U(−1, 1)
and sj ∼ {−1, 1}, and xj and sj are independent—but also in more complicated cases where all
weights and biases are normal or uniform.

It is also apparent from Table 1 that if one were to search for roots only in (x1, xn), then some of the
simpler distributions produce a smaller number of roots in the affine transformation. This scenario
is less relevant to the study of random neural networks, since neurons can produce new knots for
any x ∈ R. We analyze the presence of roots in (−∞, x1) or (xn,∞) in Appendix A.

4.3.2 Scaling of distributions

Another notable property is that if the random distributions are symmetric about zero and b2 = 0,
then the scalings of the distributions have no effect on the expected number of roots. This can be
seen by examining the sets of weights and biases individually. Most simply, if w2j were replaced
by aw2j for some a > 0, then y in (3) would be replaced by ay, and the number of roots would
not change. On the other hand, if the input biases b1j were replaced by ab1j , then the model y =∑
j w2jσ(w1jx + ab1j) would equivalently be y/a =

∑
j w2jσ(w1jx/a + b1j); that is, the entire

model would be scaled both horizontally and vertically by a, again leaving the number of roots
unchanged. Finally, if the input weights w1j were replaced by aw1j , then equivalently, x in (3)
would be replaced by x/a. That is, the model would be horizontally inversely scaled, but the vertical
scale and the number of roots would remain invariant.

At this point, it remains to describe how the distribution of the output bias b2 affects the number
of roots. In Section 5.3, we investigate the effect of scaling c0. By (13a), such a scaling can be
interpreted as a modification of only b2, while all other parameters remain fixed.
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4.3.3 Example set of distributions

Next, we discuss a particular set of distributions that we will use for further empirical tests in Sec-
tion 5. For the case of w1j , b1j ∼ N(0, 1), w2j ∼ {−1, 1}, and b2 = 0, the distributions of the
equivalent parameters in (13) can be derived. The slopes sj = w2j |w1j | are given by N(0, 1). The
factor of |w1j | is constrained to be positive, with zero probability of being zero. On the other hand,
w2j is chosen independently, so the sign of sj is positive or negative with one-half probability each.

Next, the knot locations xj = −b1j/w1j are given by the standard Cauchy distribution, which we
denote Cauchy(0, 1). This distribution has a probability distribution function (PDF) 1/(π(x2 + 1))
and cumulative distribution function (CDF) (tan−1 x)/π + 1/2. The Cauchy distribution is a bell
curve, but its tails decay much more slowly than in normal distributions. In fact, the slow decay
causes the distribution to have undefined moments, including mean and variance.

Moving forward, we investigate the distributions of c0 and c1 These parameters are more challeng-
ing because the number of summands is not fixed, but is rather chosen from a binomial distribution.
Specifically, let r be the number of terms in the set {w1j |w1j < 0}. Since w1j is chosen symmetri-
cally about zero, we letB denote the binomial distribution and simply conclude that r ∼ B(n, 1/2).
Thus, in the limit of n → ∞, r ∼ N(n/2, n/4). For both c0 and c1, each of the r summands is
chosen from N(0, 1): in the former case, the sign provided by w2j does not affect the distribution
of b1j ; in the latter case, w1j < 0, but w2j allows each summand to take either sign.

If r is explicitly known, then c0, c1 ∼ N(0, r). Therefore, the distributions of c0 and c1 for n →
∞ can be computed by considering the distribution of the number of summands r. Let φ and Φ
respectively denote the PDF and CDF of the standard normal distribution. Also, let Fi denote the
CDF of ci for i = 0, 1, and let Fr denote the CDF of r. We then find that for n→∞,

dFi(ci) =

∫ ∞
r=0

dFi(ci|r)dFr(r) (17a)

=

∫ ∞
r=0

(
1√
r
φ

(
ci√
r

)
dci

)(
2√
n
φ

(
2r − n√

n

))
dr. (17b)

Since the mean of Fr scales with n, let us introduce a change of variables by defining r̂ := r/n, so
as to remove this dependence. Then,

dFi(ci) =

∫ ∞
r̂=0

(
1√
nr̂
φ

(
ci√
nr̂

)
dci

)
(2
√
nφ(
√
n(2r̂ − 1))) dr̂. (18)

Note, however, that if δ denotes the Dirac delta function, then

lim
n→∞

2
√
nφ(
√
n(2r̂ − 1)) = δ(r̂ − 1/2). (19)

Thus,

dFi(ci) =

√
2

n
φ

(√
2

n
ci

)
dci; (20)

that is, c0, c1 ∼ N(0, n/2). Further statistics may be derived; for example, corr(sj , c1) = −1/
√

2n,
as per (16b).

5 Connection with integrated random walks

In this section, we will draw and analyze a connection between the single-layer neural network archi-
tecture in (3, 12) and integrated random walks of variable step size. The purpose of this connection
is ultimately to provide a different perspective for understanding Conjecture 3.

First, the integrated random walk is defined and related to single-layer neural networks in Sec-
tion 5.1. Next, we discuss the number of zero crossings of integrated random walks and some re-
lated statistics in Section 5.2, and we comment on fixed versus variable step sizes. In Section 5.3, we
empirically analyze how c0 and c1 in (12)—which are essentially the initial conditions of the asso-
ciated integrated random walk—affect the number of zero crossings of the neural network. Finally,
we empirically study the variances and covariances of the integrated random walk in Section 5.4.
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Figure 4: (a) A random walk (21) with 103 steps, where sj ∼ N(0, 1) for all j. (b) The integrated
random walk (23) for (a).

5.1 Overview and equivalence with random neural networks

We will begin with basic definitions. Note that because our goal is ultimately to relate integrated
random walks with neural networks, we will use non-standard definitions and nomenclature.

Definition. Let sj be i.i.d. random variables for j = 1, . . . . For some initial condition y′0, a random
walk in one dimension is the sequence

y′k = y′0 +

k∑
j=1

sj (21)

for k = 0, 1, . . . .

Remark. The random walk can be written in iterative form as

y′k+1 = y′k + sk+1, k = 0, 1, . . . . (22)

An example of a random walk is shown in Figure 4(a).

Definition. Given (21) and some initial condition y1, an integrated random walk of fixed step size
∆x in one dimension is the sequence

yk = y1 + ∆x

k−1∑
j=1

y′j (23)

for k = 1, . . . .

An example of an integrated random walk is shown in Figure 4(b).

Definition. For j = 1, . . . , consider a sequence of points xj with xj < xj+1 for all j, and define

∆xj = xj+1 − xj . (24)

Given (21) and some initial condition y1, an integrated random walk of variable step size in one
dimension is the sequence

yk = y1 +

k−1∑
j=1

∆xj y
′
j (25)

for k = 1, . . . .

Remark. The integrated random walk of variable step size can be written in iterative form as

xk+1 = xk + ∆xk (26a)[
yk+1

y′k+1

]
=

[
1 ∆xk
0 1

] [
yk
y′k

]
+

[
0

sk+1

]
(26b)

for k = 1, . . . , with initial conditions y1 and y′1 = y′0 + s1. With a fixed step size, the iteration is
the same, except with ∆x in place of ∆xk. The notation is shown visually in Figure 5.
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Figure 5: The integrated random walk notation used in this section.

Having defined the integrated random walk, the equivalence with the single-layer neural net-
work (12) can be shown. For k = 1, . . . , n, (21, 25, 26) is defined for discrete x and y and is
merely a discrete sampling of (12), which is defined for all x ∈ R and for continuous y. Conceptu-
ally, both the forward-facing rectified linear unit form of the neural network (12) and the integrated
random walk (25) perform the same action. That is, each time x is advanced from one knot to the
next, a new slope is added to the current slope. This is achieved in the neural network by activat-
ing another rectified linear unit, and in the integrated random walk by adding a new element of the
random walk. The equivalence is stated formally as follows.

Theorem 4. Let xk be given by (13b), and let yk = y(xk). The random single-layer neural network
model (3, 12) and the integrated random walk of variable step size (21, 25, 26) produce the same set
of points (x1, y1), . . . , (xn, yn) if the initial conditions of the integrated random walk are

y′0 = c1 (27a)
y1 = c1x1 + c0. (27b)

Proof. First, note that under the assumptions of the random neural network model, the slopes
sj (13b) are i.i.d., as in the random walk. Now, substituting (21, 24, 27) into (25) for k = 1, . . . , n
yields

yk = c1x1 + c0 +

k−1∑
j=1

(xj+1 − xj)
(
c1 +

j∑
a=1

sa

)
(28a)

= c1x1 + c0 + (xk − x1)c1 + (x2 − x1)s1 + (x3 − x2)(s1 + s2) + . . .

+ (xk − xk−1)(s1 + · · ·+ sk−1)
(28b)

= c1xk + c0 + (xk − x1)s1 + (xk − x2)s2 + · · ·+ (xk − xk−1)sk−1 (28c)

= c1xk + c0 +

k−1∑
j=1

sj(xk − xj). (28d)

Since k > j in the summands, xk − xj > 0; thus, rectified linear units can be added with no effect,
as

yk = c1xk + c0 +

k−1∑
j=1

sjσ(xk − xj). (29)

Furthermore, for j = k, . . . , n, xk−xj ≤ 0, so extra unactivated rectified linear units can be added,
as

yk = c1xk + c0 +

n∑
j=1

sjσ(xk − xj). (30)

Thus, we have recovered (12) for x = xk.

The fact that random single-layer neural networks are equivalent to integrated random walks has
an important impact for large n. Most notably, in the limit that n → ∞, most common choices of
weight and bias distributions would lead to an increasingly dense set of knot points xj . If the knot
points xj were to make up a continuum in some subset of R, then the random walk (21) would be a
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Wiener process—i.e., a Brownian motion—in x. Therefore, the integrated random walk would be an
integrated Wiener process. More specifically, it would be a time-changed integrated Wiener process
if the xj were not equally spaced. Since the Wiener process isC0 in x, the integrated Wiener process
is C1. Thus, in the limit that n→∞, the random neural network must be reasonably smooth. Even
if n were somewhat small, the random neural network would still be somewhat smooth in the sense
of total variation.

The smoothness of random neural networks is evident in Figure 1, particularly in the right column,
as well as in Figure 4(b). One of the most important implications of the smoothness is that it prevents
optimizers from immediately overfitting neural networks to training data, particularly when the data
contain high-wavenumber noise. We explore the nature of early training in Section 6, where we
examine weight and bias distributions produced by optimizers.

5.2 Zero crossings and initial conditions

As previously stated, the objective of the integrated random walk analysis is to prove that our par-
ticular form of the integrated random walk has one root (Conjecture 3), so as ultimately to prove
that the number of knots in random neural networks equals the number of neurons (Conjecture 1).
Unfortunately, the number of roots in integrated random walks of fixed step size is still not very
well understood (Sinai 1992; Groeneboom et al. 1999; Kratz 2006; Denisov and Wachtel 2015), let
alone the number of roots with variable step size. Here, we review some of the previous literature
with fixed step size and report some empirical findings, before turning to roots of integrated random
walks with variable step size.

A number of studies have considered the semi-infinite integrated random walk of fixed step size with
homogeneous initial conditions y′0 = y1 = 0. It has been shown that the probability that the first
zero crossing—often called the exit time—occurs at or above some index k scales asymptotically by
k−1/4. This result was shown for the random variables sj ∼ {−1, 1} by Sinai (Sinai 1992), which
proved the result both for a finite step size and for the integrated Wiener process, as the continuum
limit of the integrated random walk. This topic was further studied by a number of additional authors
(e.g., Groeneboom et al. 1999; Denisov and Wachtel 2015), who have refined the asymptotic limits
on the exit time, computed the multiplicative coefficient on k−1/4, and provided additional analytical
insight.

At this point, however, there do not appear to exist exact (as opposed to asymptotic) analytical
results on the zero crossings of integrated random walks. We briefly report on some empirical
findings based on 106 trials of integrated random walks, with homogeneous initial conditions. This
model is equivalently

f(x) :=

n∑
j=1

sjσ(x− xj). (31)

In each trial, the random variables are sj ∼ N(0, 1), each chosen independently, and 106 steps of
fixed size ∆x = 1 are taken. Then, the properties of the zero crossings are evaluated. Figure 6(a)
shows the survival function (i.e., unity minus the CDF) of the first zero crossing’s location. The
numerical experiments confirm the x−1/4 asymptote (Sinai 1992; Groeneboom et al. 1999; Denisov
and Wachtel 2015).

Next, Figure 6(b, c) respectively shows the CDF of |y| and |y′| at the iteration just before the first
zero crossing. For |y|, |y′| < 1, the asymptotic scalings given by |y| and y′2 fit the data well.
Note that by comparison, for some z ∼ N(0, 1), the CDF of |z| goes by

√
2/π|z| + O(|z|3) for

|z| � 1. The random walk and integrated random walk are of course more complicated, because
the respective single and double integration of the random variable add a “hysteresis” effect. For
instance, if yk > 0 and y′k � −1, then a zero crossing is more likely to occur between indices k
and k + 1 than if y′k ≈ −1 or if −1� y′k < 0. Thus, as reflected in Figure 6(c), large values of |y′|
before the first zero crossing are preferred over small values, as compared to the CDF |z|.
Finally, the probability mass function (PMF) of the number of roots, out of 106 steps, is shown in
Figure 6(d). The median of the distribution is 3, and the empirical expected value is 3.71. The most
notable feature of the distribution is that the PMF is asymptotically related to the number of roots
by 2−roots. Analytical results on the zero crossings of random walks are well-known. For instance,
for sk ∼ {−1, 1}, the probability that y′k = 0 is asymptotically 1/

√
πk for k even and large, and the
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Figure 6: Statistics of integrated random walks with sj ∼ N(0, 1), with 106 steps of fixed size
∆x = 1. Empirical results (blue) and asymptotic limits (red) up to a multiplicative constant are
shown. (a) The survival function of the first zero crossing. (b) The CDF of the integrated random
walk value |y| at the step before the first zero crossing. (c) As (b), but with the random walk value
|y′|. (d) The probability mass function of the number of roots out of the 106 steps.

expected number of zeros out of n steps is asymptotically 2
√

(n+ 1)/π − 1 for n even and large
(Grinstead and Snell 2012). In contrast, it is not presently clear for integrated random walks how
the distribution of the number of zero crossings is analytically related to the number of steps.

In lieu of an analytical derivation, we empirically investigate the expected number of zero crossings
as a function of the number of steps n. In this numerical experiment, we simulate both integrated
random walks with fixed ∆x, as well as random neural networks (3) with w1j , b1j ∼ N(0, 1),
w2j ∼ {−1, 1}, and b2 = 0. In the latter case, however, we then manually set c0 = c1 = 0 to be
consistent with the homogeneous initial conditions in Figure 6. For this particular case, as discussed
in Section 4.3.3, the knot locations are given by xj ∼ Cauchy(0, 1), and thus the step sizes ∆xj are
variable and random. For both the integrated random walk and the neural network, the number of
zero crossings is counted and averaged over 8,192 to 106 trials, with n = 1 to 220 steps.

Figure 7 shows the dependence of the mean zero crossings on n. A clear feature of the dependence
is that for any n that is reasonably large—about 16 for integrated random walks with fixed ∆x, and 4
for the random neural networks with homogeneous initial conditions—the number of zero crossings
is very close to 0.278 lnn plus a constant. The additive constants are different between the two
cases. Nevertheless, the fact that the two models have drastically different xj distributions, and yet
have an essentially identical dependence on n, is unexpected. We posit that the empirical 0.278 lnn
relationship may be supported by scaling arguments.

5.3 Decomposition of random neural networks

Another perspective on the roots of a random neural network can be gained by decomposing the
neural network (12) into an integrated random walk with homogeneous initial conditions y′0 = y1 =
0 (31) and the line c1x+ c0. Quite simply, the random neural network y(x) has a root wherever

f(x) :=

n∑
j=1

sjσ(x− xj) = −c1x− c0. (32)
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Figure 8: Three examples (columns) of the decomposition of a random neural network with n = 103

neurons (top row) into an integrated random walk with homogeneous initial conditions ((31); bottom
row, blue) and the line c1x + c0 (bottom row, green; shown as −c1x − c0). Roots of the random
neural network occur where the blue and green curves meet.

Whereas the integrated random walk form of the random neural network requires carefully chosen
initial conditions (27), the utility of this decomposition is that it allows us to consider the simpler
case of homogeneous initial conditions y′0 = y1 = 0, as in Section 5.2. Instead of considering the
roots of the integrated random walk, however, we now compare the integrated random walk to a
line.

Three examples of the decomposition are shown in Figure 8. Again, Conjecture 3 posited that
random neural networks as described should have one root on average. Figure 8 shows examples
with one and two roots. By comparing the behavior of the integrated random walk and the line over
x ∈ R, we may gain intuition on how many roots the neural network should have.

The key experiment we conduct in this regard is to adjust the values of c0 and c1 manually after
constructing random neural networks, and to observe how the expected number of roots is affected.
Here, we choose w1j , b1j ∼ N(0, 1), w2j ∼ {−1, 1}, and b2 = 0 independently, as in Section 4.3.3;
n = 103 neurons are used in each model. Then, for each multiplicative factor in 2−20, 2−19, . . . , 220,
either c0 or c1 is multiplied by this factor while the other remains unchanged. For each multiplicative
factor, 105 trials are run, and the average number of roots over the trials is computed. The results of
this experiment are shown in Figure 9.
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Figure 9: The mean number of roots in the random neural network (12) with n = 103 as (a) c0 or
(b) c1 is adjusted.
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Figure 10: The mean number of roots in the random neural network (12) with n = 103 as (a) c0 is
adjusted and c1 is set to zero, or (b) c1 is adjusted and c0 is set to zero.

Some of the features of Figure 9 are easily understandable, but others admittedly betray intuition.
For instance, if |c0| is increased greatly in Figure 9(a), then the line −c1x − c0 would be far re-
moved from the integrated random walk (shown respectively in green and blue in Figure 8), thereby
reducing the expected number of intersections. A subtle phenomenon, however, is that if the mul-
tiplicative factor on c0 is reduced from unity to zero, then the average number of roots actually
decreases slightly—but statistically significantly—from 0.996 to 0.965. It is not presently clear why
the reduction of the bias would actually decrease the number of roots.

In Figure 9(b), the expected number of roots approaches unity as the multiplicative factor on c1
approaches infinity. The reason is simply that in this limit, the right-hand side of (32) becomes a
vertical line, which would have exactly one intersection with the integrated random walk. Also, for
c0 6= 0, a “moderate” multiplicative factor of around 10−2 on c1 would produce a greater number of
roots than a very small factor of less than 10−4. With a very small factor, the line is flat and away
from y = 0, and the integrated random walk would have reach c0 to obtain an intersection. The
moderate factor also produces a greater number of roots than a very large factor. With a moderate
factor, the line stays near y = 0 for a large region of the domain, increasing the probability of
intersections with the integrated random walk. On the other hand, it is presently very unintuitive
why the expected number of roots actually dips noticeably at a multiplicative factor of unity. This
suggests that the choice of c1 given by (13) contains some special property that reduces the number
of intersections between the integrated random walk and the line −c1x − c0, as compared to both
smaller and larger c1.

A second set of experiments was conducted, where either c0 or c1 is multiplied by some factor,
and the other coefficient is manually set to zero. In Figure 10(a), with c1 = 0, small factors on
c0 increase the number of roots because a flat line near y = 0 is more likely to intersect with the
integrated random walk than one further from y = 0. In fact, the case with c0 = c1 = 0 corresponds
exactly to root counting in the integrated random walk with variable step size and homogeneous
initial conditions (Figure 7). As a technicality, the case of c0 → 0 or c1 → 0 is different from
c0 = 0 or c1 = 0, because the latter does not allow the existence of a root between the first and
second steps.
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Figure 11: Variance of the 103-step integrated random walk with homogeneous initial condi-
tions (31), for (a) x < 0 and (b) x > 0.

Figure 10(b) shows the number of roots with c0 = 0 and c1 adjusted by some multiplicative factor.
As before, a small |c1| allows the integrated random walk to intersect with the line more readily than
a large |c1|. In the case of |c1| � 1, the line is nearly vertical, and only one intersection is expected.
As with Figure 9(b), however, it is unclear why there exists a small but statistically significant dip
near a multiplicative factor of unity. Again, there may exist some special property in the construction
of c1 that makes the number of roots increase of c1 is altered in either direction.

5.4 Variances and covariances

Yet another angle from which Conjecture 3 may be viewed is in terms of the variances and covari-
ances of the random neural network, or of the decomposition described in Section 5.3. To begin, we
turn again to the decomposition of the random neural network into an integrated random walk with
homogeneous initial conditions and a line (32). Since the line is relatively easy to understand and
the distribution of its coefficients can be derived, we focus on the variance of the integrated random
walk with homogeneous initial conditions. This is done with the understanding that the integrated
random walk can later be compared back to the line to search for intersections of the two.

In the first experiment, 2 · 104 trials of random neural networks with w1j , b1j ∼ N(0, 1), w2j ∼
{−1, 1}, and b2 = 0 (see Section 4.3.3) are run with n = 103 neurons. In each trial, the line c0x+c1
is discarded, and only the integrated random walk with homogeneous initial conditions is retained,
as in (31). Then, the points on the integrated random walk are separated into the n Cauchy quantiles
separated by the divisions at x = tan((j/n − 1/2)π) for j = 1, . . . , n − 1. For each quantile, the
variance is computed and plotted in Figure 11.

The data in Figure 11 can be split roughly into three sections. First, one quarter of the points
xj ∈ Cauchy(0, 1) are in (−∞,−1), and the variance in this domain scales by x−1. Second, one
half of the points xj are in (−1, 1). Although the variance looks flat in this region, the flatness is
an artifact of the logarithmic scaling of the x-axis. The empirical relation in this domain is roughly
ln Var(f(x)) = 1.21x+6.26, though a higher-order dependence is also present. Finally, one quarter
of the points xj are in (1,∞), and the variance scales by x2.

The different scaling in (−∞,−1) and (1,∞) is very well-defined in the empirical data, and appears
to a special feature of this integrated random walk. By comparison, the variance of the integrated
random walk of fixed step size (23) is known to scale by O(x3): observing (28d) with c0 = c1 = 0
and xk = (k − 1)∆x for some fixed ∆x, we have that

Var(yk) = ∆x

k−1∑
j=1

j2 = (k3/3− k2/2 + k/6)∆x. (33)

The reasons for the differences in scaling laws are presently unknown.

Another quantity that can be analyzed is the correlation between a random neural network y(x) and
itself at a shifted location x + h. The decay of the correlation with increasing |h| can reveal the
smoothness of y(x), which may ultimately be tied back to the expected number of roots (see Adler
1990 for a general reference). Numerical experiments with the same weight and bias distributions
as before, but with n = 100 neurons, are run with 104 trials. In this experiment, random neural
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Figure 12: The correlation coefficient between y(x) and y(x+ h) for n = 100 neurons.

−30 −20 −10 0 10 20 30 40

h

0.0

0.2

0.4

0.6

0.8

co
rr
(y
(x
),
y
(x

+
h
)) (a)

−4 −2 0 2 4

h

0.0

0.2

0.4

0.6

0.8

(b)

Figure 13: The correlation between y(x) and y(x+ h) for x = −0.02 (blue), −0.34 (green), −0.74
(red),−1.39 (cyan),−3.11 (magenta), and−8.00 (yellow). (a) The entire domain. (b) Zoomed near
h = 0.

networks are linearly interpolated onto the n points dividing the n + 1 quantiles of the Cauchy
distribution, and the correlation is computed as

corr(y(x), y(x+ h)) =
E(y(x)y(x+ h))√

Var(y(x))Var(y(x+ h))
, (34)

since E(y(x)) = 0.

The result of this experiment is shown in Figure 12. A subset of this numerical result is also shown
in Figure 13, which shows the correlation as a function of h for different values of x. In general, the
random neural network at x is notably correlated with itself at x+ h only if sgn(x) = sgn(x+ h).
We note as before that half of the knot points xj are in (−1, 1), so the dynamics of the equivalent
integrated random walk change very quickly near x = 0. It is reasonable to posit that the relatively
dense arrangement of knots in (−1, 1) is enough to remove the correlation in y between x < 0 and
x > 0. On the other hand, y(x) is highly correlated with y(x + h) for x > 0 and large h (or for
x < 0 and large −h) because the knot points are sparse for large |x|.
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6 Relation with early stages of training

6.1 Zero bias

A choice of weight distributions effectively gives a measure on the function space parametrized by
the neural network. Therefore, exploring the structure of random networks under various weight dis-
tributions translates to statements about the output functions we expect to see from those networks.
The nature of random networks can be interpreted simply as a basic research problem, particularly
with regard to the disparity between the potential complexity of the network and the empirically
expected complexity, as given by the number of knots.

Yet, as we will later see, random networks also inform our understanding of actual training. Standard
network initialization methods produce weights which are either normal or uniform. That is, in real
networks, we expect to find weights distributed much as we see in the first several rows of Table 1.
Hence, our analysis almost immediately applies to actual training.

There remains, however, the question of the bias distributions. Practically, the biases are almost
always initialized to zero. There are good reasons for this: first, the network is already made asym-
metric by randomly selecting the weights, so there is no danger of identical nodes at the origin.
Second, just as with weights, there is no clear “correct” choice for initialization, so it may be better
for the biases just to be zeroed. Third, and probably most salient, such an initialization works, so
there is little motivation to change. We show in Chen et al. (2016) some of the consequences of zero
bias initialization. The primary one is that the network tends to fit the data closely near the origin: it
learns from the origin outward.

Pathologies notwithstanding, it turns out that even with zero biases, most of the biases will be nor-
mally distributed after a tiny amount of gradient descent training, and the rest will be zero. Although
the variance of the normal part of the distribution is small, this result implies that when training real
networks, we expect our description of random network structure to apply.

In this section, we explain the reason for the bias distribution, assuming that the neural network
training is based on gradient descent, as is typically the case. To show that the biases will have some
distribution after one step of training, it suffices to compute the gradient of the loss function with
respect to the biases.

6.2 The gradient with respect to a bias

To compute the gradient of the loss with respect to a bias, we first recall some notation for deep
networks, as introduced in Section 2. In layer i = 1, . . . , l, neuron k = 1, . . . , ni has a weight vector
and bias respectively denoted by wik and bik. Let the weight vector be wik = [wik1 · · · wikni−1

].
Note that each scalar wikj is the weight assigned by neuron k of layer i to the output value of neuron
j in layer i− 1. It will be important for us to understand the computed value at a neuron both before
and after activation. Using the notation in (2), let

v̄ik =

{
wik · x + bik | i = 1,

wik · vi−1 + bik | i > 1
(35)

be the input to the rectified linear unit in neuron k of hidden layer i, such that vik = σ(v̄ik) (cf. (2b)).
For simplicity, we will continue the assumption that the network has a single input and output. As
before, our analyses generalize immediately to multidimensional outputs. It remains difficult to
apply our analytical results to multidimensional inputs, but they still empirically hold.

Let us consider the typical loss functions given by the mean absolute error and the mean squared
error. If for a given input data point x, the desired output is ŷ but the actual neural network output
is y, then these losses are respectively |y − ŷ| and (y − ŷ)2. Their derivatives with respect to some
bias bik are

∂|y − ŷ|
∂bik

= sgn(y − ŷ)
∂y

∂bik
, (36a)

∂(y − ŷ)2

∂bik
= 2(y − ŷ)

∂y

∂bik
. (36b)
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Figure 14: The four possibilities for v̄ik(x) (top) and vik(x) = σ(v̄ik(x)) (bottom) when all biases
are zero.

In both cases, the gradient is a constant multiple of ∂y/∂bik. Thus, to understand the distribution of
the gradient of the loss, it suffices to understand the gradient of the output.

Let H denote the Heaviside step function

H(x) :=

{
0 | x < 0

1 | x ≥ 0
, (37)

which is the derivative of rectified linear unit σ. Again, consider some bias bik. Using the substitu-
tions jl+1 = 1 and ji = k, the chain rule yields

∂y

∂bik
=

nl∑
jl=1

nl−1∑
jl−1=1

· · ·
ni+1∑
ji+1=1

l∏
α=i

wα+1,jα+1,jαH(v̄αjα); (38)

see Appendix B for a derivation. Although this expression looks complicated, it is conceptually
straightforward. This form iterates over all paths from neuron k of layer i to the output. For each
path, the weights along it and the associated Heaviside step functions are multiplied. This entire
expression is a function of the input x.

6.3 The expected gradient

In analyzing (38), a pertinent question is how likely H(v̄ik(x)) is to be identically zero. Because all
the biases are zero at the start of neural network training, the form of v̄ik(x) is actually quite simple:
it must be a piecewise linear function with a single knot at the origin. Thus, it looks like one of the
four pictures shown in the top row of Figure 14. The two slopes that define v̄ik(x) are computed as
linear combinations of the two slopes across the elements of the hidden layer output vector vi−1(x).
To obtain vik(x), we then apply the rectified linear unit to v̄ik(x). Hence, for many of the nodes,
v̄ik(x) is always negative and vik(x) is therefore identically zero, as shown in the third column of
Figure 14. If the weights are independent and symmetric about zero, then this occurs for one quarter
of the nodes in hidden layer i = 2.

In fact, as the layer index i increases, the probability of an identically zero neuron grows. The
reason is that the left and right slopes of v̄ik(x) are in fact correlated. Understanding the precise
correlation is a difficult problem, so it is hard to give the actual probability that vik(x) = 0 for
all x. Experimentally—and theoretically, in a simplified model—as the layer level i increases, the
probability that vik(x) = 0 for all x approaches 1/2. Likewise, the probability that vik is ∨-shaped
also approaches 1/2.

If vik(x) = 0 for all x, then the gradient ∂y/∂bik(x) (38) will be zero. By the argument above, this
will apply to about half of the neurons as the layer level gets large. On the other hand, if vik(x) is
not identically zero, then we can once again consider ∂y/∂bik(x). With l layers of n neurons each,
there exist nl paths from a neuron to the output. Each of these paths produces a product in (38).
Now, every node has a probability in [1/4, 1/2) of being deactivated for all x, so the probability
that a node is activated for some x is at least 1/2. For an entire path to be nonzero for some x,
all nodes along the path have to be activated, which occurs with probability at least 1/2l. Hence,
we expect more than (n/2)l of these products to be nonzero. These are products of weights and
Heaviside step functions, and are identically distributed. Although they are not strictly independent,
the correlations of the paths approaches zero as the path length increases.
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Hence, we can apply the central limit theorem to draw our chief conclusion: the gradients ∂y/∂bik
are random with a distribution given by the sum of a normal distribution and a point mass at zero.
The actual mass at zero, and a careful proof of many of the above assertions, are difficult to obtain
and somewhat unnecessary, given how well the prediction is borne out in practice.

7 Conclusion

In this paper, we have analytically and numerically explored the knots of random scalar-input, scalar-
output dense neural networks with rectified linear unit activations. These random networks are
encountered in early stages of training on data, as well as in extreme learning machines. Numerical
experiments show that the number of knots in R → R random neural networks is equal to the
number of neurons, to very close approximation. The same result would hold for R→ Rp networks.
This number of knots empirically holds even when weights and biases are drawn from different
combinations of the N(0, 1), U(−1, 1) and {−1, 1} distributions. The main thrust of this paper was
to develop an analytical explanation of this behavior, and to comment on its implications.

Although we are unable at this point to develop a proof on the expected number of knots, we do
develop certain equivalences that we believe may point toward an eventual proof. In Lemma 1, we
showed that in the limit of ni → ∞ neurons in layer i, all knots from layer i − 1 are preserved in
the layer i outputs. Therefore, we developed the central conjecture, Conjecture 3, which states that
the input to every neuron is expected to have one root in this limit. Again, this result is empirically
supported, though a direct proof remains elusive. To study this conjecture, we state in Theorem 4 that
the input to every neuron is equivalently an integrated random walk with specific initial conditions.

In this paper, we also explored certain properties related to the general behavior of the neural net-
work and the equivalent integrated random walk. These properties include the correlation between
integrated random walk parameters, as well as the scaling of the probability distributions. Further-
more, we explored the decomposition of the integrated random walk into one with homogeneous
initial conditions, and the straight line stemming from the nonzero initial conditions. We then ana-
lyzed the zero crossings of integrated random walks with homogeneous initial conditions, the effects
of changing the initial conditions, and the variances and covariances of the integrated random walks.

Next, we investigated the relation between random neural networks and the early stages of train-
ing. The integrated random walk has certain properties such as smoothness in the continuum limit,
which prevent optimizers from immediately overfitting to data. We showed that although optimizers
typically initialize biases to zero, the probability distribution of the biases quickly becomes a normal
distribution plus a point mass at zero. Thus, we verify that the random neural networks explored in
this paper are in fact encountered in the real-life training of neural networks on data.

Recently, we have also analyzed different aspects of neural network theory. In one companion paper
(Chen 2016), we derive a tight upper bound on the number of knots with the same neural network
architecture we investigated in this paper. In another (Chen et al. 2016), we present empirical results
on the relation between the size of neural networks and various parameters related to training on
data.

Yet, many other important and relevant topics remain to be explored. As mentioned above, a proof
that the expected number of knots in a random neural network is equal to the number of neurons still
remains to be found. In addition, these R→ Rp results need to be extended to Rq → Rp networks,
for which the neural network divides the input space into convex polytopes, and the number of
linear regions would have to be counted. Furthermore, we would like to inquire if optimizers can
be initialized differently to produce more complex networks in the early stages of training. Such a
task amounts to randomizing the neural network to be less smooth than C1 in the continuum limit.
Although this increases the risk of overfitting, it may be advantageous if the function to be modeled
is known to be complex.

Yet other questions in neural network theory can be explored. Some works (e.g., Raghu et al. 2016)
use the arclength of a neural network as an alternative measure of expressivity, and the arclength
of random networks can be empirically measured. In addition, we would like to obtain a practical
measure of neural network expressivity by determining how well neural networks can fit functions of
varying smoothness. This can be determined by constructing sums of basis functions with specified
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decay rates on the function coefficients, so as to place the summed functions in specific Sobolev
spaces, and empirically fitting neural networks to these sums.

Together, the ideas presented in the papers, along with the proposed research ideas, will help us form
a better idea of neural network capabilities. These ideas can help us construct a set of guidelines
determining the network size that is necessary or sufficient for modeling specific functions.

A Appendix: Roots beyond (x1, xn)

Let us consider the last entry of Table 1, in which we examine the roots of (3) with w1j , w2j ∼
{−1, 1}, b1j ∼ U(−1, 1), and b2 = 0, all independently. The discrepancy in the knots counts in R
and in (x1, xn) implies that the expected number of knots in (−∞, x1) ∪ (xn,∞) is greater than
0. Upon examination of (12), we see that the affine transformation in (−∞, x1) is simply c1x+ c0,
since none of the rectified linear units are activated. Thus, a root appears in this interval if and only if
the slope at x < x1 has the same sign as y(x1)—that is, sgn(c1) = sgn(c1x1 + c0), or equivalently,

x1 +
c0
c1
> 0. (39)

In the limit that n→∞, x1 → −1, so a root appears in (−∞, x1) if and only if c0/c1 > 1.

The distributions for c0 and c1 can be computed by following the argument given in (17–20) and
employing the central limit theorem on dFi(ci|r). Since {−1, 1} has unity variance and U(−1, 1)
has variance 1/3, this argument shows that as n → ∞, c0 ∼ N(0, n/6) and c1 ∼ N(0, n/2).
Numerical results agree with these estimates. We demonstrated in Section 4.2 that c0 and c1 are
uncorrelated, but it can be further shown that they are independent for our choice of weight and bias
distributions. Thus, c0/c1 ∼ Cauchy(0, 1/

√
3); that is, c0/c1 has the CDF tan−1(

√
3x)/π + 1/2.

This CDF shows that P (c0/c1 > 1) = 1/6.

Therefore, the probability that a root appears in (−∞, x1) is 1/6. By symmetry arguments, it
can also be shown that the probability that a root appears in (xn,∞) is likewise 1/6. Hence, if
empirically, one root is expected to appear in (−∞,∞), then 2/3 roots are expected to appear in
(x1, xn). This is accurately reflected in Table 1.

Next, let φ and Φ respectively denote the PDF and CDF of the standard normal distribution. In the
penultimate entry of Table 1, where w1j , w2j ∼ {−1, 1} and b1j ∼ N(−1, 1) independently, the
most negative knot location x1 is given by the first order statistic with probability density function
nφ(x)(1 − Φ(x))n−1. The first order statistic must clearly decrease with increasing n, though the
order statistic is sub-logarithmic in n, as follows. The probability that x1 is greater than some x
is (1 − Φ(x))n, so the CDF of x1 is 1 − (1 − Φ(x))n. Thus, the median x̃1 of x1 is given by
1− (1− Φ(x̃1))n = 1/2, or

x̃1 = Φ−1(1− 2−1/n). (40)
Using a series expansion for n→∞, it can be shown that retaining the leading orders,

x̃1 = −
√

2(lnn− ln ln 2)− ln(2π)− ln(2(lnn− ln ln 2)− ln(2π))), (41)

which is dominated by −
√

2 lnn.

On the other hand, we can follow a scaling argument reminiscent of the prior example and find
that the variances of c0 and c1 both scale by n; hence, the distribution of c0/c1 is independent of
n. Thus, as n → ∞ increases, we expect that the probability of (39) approaches zero, albeit at
root-logarithmic rate. Hence, the number of roots in (x1, xn) will approach the number of roots in
(−∞,∞). The convergence is extremely slow, however, and the limit cannot be reflected accurately
in Table 1.

Lastly, we can see that in most of the entries of Table 1, nearly all the roots of (3) lie within (x1, xn).
Differences between the average numbers of roots in (−∞,∞) and (x1, xn) are statistically indis-
tinguishable. This feature can once again be explained using scaling arguments.

Let us consider the case where w1j , b1j ∼ N(0, 1), w2j ∼ {−1, 1}, and b2 = 0, all independently,
as in Section 4.3.3. It was shown there that c0, c1 ∼ N(0, n/2). Furthermore, the two parame-
ters are independent; thus, c0/c1 ∼ Cauchy(0,

√
n/2). On the other hand, xj = −b1j/w1j ∼

Cauchy(0, 1). Denote by g(x) = 1/(π(x2 + 1)) and G(x) = (tan−1 x)/π+ 1/2 the PDF and CDF
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of the Cauchy(0, 1) distribution, respectively. Let us specifically consider x � −1, since smallest
of n samples from the Cauchy(0, 1) distribution must almost certainly be much less than −1 for
large n. The PDF of x1 and its series expansion for x� −1 are

ng(x)(1−G(x))n−1 =
n

π(x2 + 1)

(
1

2
− tan−1 x

π

)n−1
(42a)

=
n

πx2
+
n(n− 1)

π2x3
+O(x4). (42b)

Also, observe that for some scaling factor a > 0,

a2n

π((ax)2 + 1)

(
1

2
− tan−1(ax)

π

)an−1
=

n

πx2
+
n(n− 1/a)

π2x3
+O(x4), (43)

which differs from (42b) byO(x−3). Thus, as n scales by a, x1 must also scale by a—and therefore
x1 scales by n—to leading order.

As a side note, this could have been shown more quickly but less rigorously by considering only
the median x̃1 of x1, as previously, instead of scaling its entire PDF. The CDF of x̃1 is 1 − (1 −
((tan−1 x)/π + 1/2))n. Setting this is equal to 1/2, the median and its series expansion are

x̃1 = tan

(
π

(
1

2
− 1

21/n

))
(44a)

= − n

(ln 2)π
− 1

2π
+O(n−1), (44b)

which scale by n to leading order.

In all, c0/c1 is centered at 0 and scales by
√
n/2, but x1 � −1 scales by n. By this argument, (39)

is only satisfied with very small probability, even for modest n—with probability about 0.02 for
n = 50—so almost all roots must reside within (x1, xn).

B Appendix: Derivation of backpropagation gradient

Starting from (2c), the scalar output of the neural network is
y = wl+1,1 · vl + bl+1,1 (45a)

=

nl∑
jl=1

wl+1,1,jlvljl + bl+1,1. (45b)

Applying the chain rule, we have that

∂y

∂bik
=

nl∑
jl=1

wl+1,1,jl

∂vljl
∂bik

(46a)

=

nl∑
jl=1

wl+1,1,jlH(v̄ljl)
∂v̄ljl
∂bik

. (46b)

Note that
v̄ljl = wljl · vl−1 + bljl (47a)

=

nl−1∑
jl−1=1

wljljl−1
vl−1,jl−1

+ bljl ; (47b)

thus, continuing to apply the chain rule,

∂y

∂bik
=

nl∑
jl=1

wl+1,1,jlH(v̄ljl)

nl−1∑
jl−1=1

wljljl−1

∂vl−1,jl−1

∂bik
(48a)

=

nl∑
jl=1

wl+1,1,jlH(v̄ljl)

nl−1∑
jl−1=1

wljljl−1
H(v̄l−1,jl−1

)
∂v̄l−1,jl−1

∂bik
, (48b)
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and so on. Finally, the chain rule ends with

∂viji
∂bik

=

{
H(v̄ik) | ji = k,

0 | ji 6= k
. (49)

Therefore, the chain of sums continues to level i+ 1, with level i completing the chain rule with the
term wi+1,ji+1,kH(v̄ik). In all, we have that

∂y

∂bik
=

nl∑
jl=1

wl+1,1,jlH(v̄ljl)

nl−1∑
jl−1=1

wljljl−1
H(v̄l−1,jl−1

)

nl−2∑
jl−2=1

wl−1,jl−1,jl−2
H(v̄l−2,jl−2

) · · ·

ni+1∑
ji+1=1

wi+2,ji+2,ji+1
H(v̄i+1,ji+1

)wi+1,ji+1,kH(v̄ik).

(50)

By rearranging the sums and performing the appropriate substitutions, we obtain (38).
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