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Abstract

Categorical variables are a natural choice for representing discrete structure in the
world. However, stochastic neural networks rarely use categorical latent variables
due to the inability to backpropagate through samples. In this work, we present an
efficient gradient estimator that replaces the non-differentiable sample from a cat-
egorical distribution with a differentiable sample from a novel Gumbel-Softmax
distribution. This distribution has the essential property that it can be smoothly
annealed into a categorical distribution. We show that our Gumbel-Softmax esti-
mator outperforms state-of-the-art gradient estimators on structured output predic-
tion and unsupervised generative modeling tasks with categorical latent variables,
and enables large speedups on semi-supervised classification.

1 Introduction

Stochastic neural networks with discrete random variables are a powerful technique for representing
distributions encountered in unsupervised learning, language modeling, attention mechanisms, and
reinforcement learning domains. For example, discrete variables have been used to learn probabilis-
tic latent representations that correspond to distinct semantic classes [Kingma et al., 2014], image
regions [Xu et al., 2015], and memory locations [Graves et al., 2014, Graves et al., 2016]. Discrete
representations are often more interpretable [Chen et al., 2016] and more computationally efficient
[Rae et al., 2016] than their continuous analogues.

However, stochastic networks with discrete variables are difficult to train because the backprop-
agation algorithm — while permitting efficient computation of parameter gradients — cannot be
applied to non-differentiable layers. Prior work on stochastic gradient estimation has traditionally
focused on either score function estimators augmented with Monte Carlo variance reduction tech-
niques [Paisley et al., 2012, Mnih and Gregor, 2014, Gu et al., 2016, Gregor et al., 2013], or biased
path-derivative estimators for Bernoulli variables [Bengio et al., 2013]. However, no existing gra-
dient estimator has been formulated specifically for categorical variables. The contributions of this
work are threefold:

1. We introduce Gumbel-Softmax, a continuous distribution on the simplex that can approx-
imate categorical samples, and whose parameter gradients can be easily computed via the
reparameterization trick.

2. We show experimentally that Gumbel-Softmax outperforms all single-sample gradient es-
timators on both Bernoulli variables and categorical variables.

3. We show that this estimator can be used to efficiently train semi-supervised models (e.g.
Kingma et al. [2014]) without costly marginalization over unobserved categorical latent
variables.
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The practical outcome of this paper is a simple, differentiable sampling mechanism for categorical
variables that can be integrated into neural networks and trained using standard backpropagation.

2 The Gumbel-Softmax distribution

We begin by defining the Gumbel-Softmax distribution, a continuous distribution over the simplex
that can approximate samples from a categorical distribution. Let z be a categorical variable with
class probabilities π1, π2, ...πk. For the remainder of this paper we assume categorical samples are
encoded as k-dimensional one-hot vectors lying on the corners of the (k − 1)-dimensional simplex,
∆k−1. This allows us to define quantities such as the element-wise mean Ep[z] = [π1, ..., πk] of
these vectors.

The Gumbel-Max trick [Gumbel, 1954, Maddison et al., 2014] provides a simple and efficient way
to draw samples z from a categorical distribution with class probabilities π:

z = one_hot

(
arg max

i
[gi + log πi]

)
(1)

where g1...gk are i.i.d samples drawn from Gumbel(0, 1)2. We use the softmax function as a continu-
ous, differentiable approximation to arg max, and generate k-dimensional sample vectors y ∈ ∆k−1

where

yi =
exp((log(πi) + gi)/τ)∑k
j=1 exp((log(πj) + gj)/τ)

for i = 1, ..., k. (2)

The density of the Gumbel-Softmax distribution (derived in Appendix B) is:

pπ,τ (y1, ..., yk) = Γ(k)τk−1

(
k∑
i=1

πi/y
τ
i

)−k k∏
i=1

(
πi/y

τ+1
i

)
(3)

This distribution was independently discovered by Maddison et al. [2016], where it is referred to as
the concrete distribution. As the softmax temperature τ approaches 0, samples from the Gumbel-
Softmax distribution become one-hot and the Gumbel-Softmax distribution becomes identical to the
categorical distribution p(z).
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Figure 1: The Gumbel-Softmax distribution interpolates between discrete one-hot-encoded categor-
ical distributions and continuous categorical densities. (a) For low temperatures (τ = 0.1, τ = 0.5),
the expected value of a Gumbel-Softmax random variable approaches the expected value of a cate-
gorical random variable with the same logits. As the temperature increases (τ = 1.0, τ = 10.0), the
expected value converges to a uniform distribution over the categories. (b) Samples from Gumbel-
Softmax distributions are identical to samples from a categorical distribution as τ → 0. At higher
temperatures, Gumbel-Softmax samples are no longer one-hot, and become uniform as τ →∞.

2The Gumbel(0, 1) distribution can be sampled using inverse transform sampling by drawing u ∼
Uniform(0, 1) and computing g = − log(− log(u)).
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2.1 Gumbel-Softmax Estimator

The Gumbel-Softmax distribution is smooth for τ > 0, and therefore has a well-defined gradi-
ent ∂y/∂π with respect to the parameters π. Thus, by replacing categorical samples with Gumbel-
Softmax samples we can use backpropagation to compute gradients (see Section 3.1). We denote
this procedure of replacing non-differentiable categorical samples with a differentiable approxima-
tion during training as the Gumbel-Softmax estimator.

While Gumbel-Softmax samples are differentiable, they are not identical to samples from the corre-
sponding categorical distribution for non-zero temperature. For learning, there is a tradeoff between
small temperatures, where samples are close to one-hot but the variance of the gradients is large,
and large temperatures, where samples are smooth but the variance of the gradients is small (Figure
1). In practice, we start at a high temperature and anneal to a small but non-zero temperature.

In our experiments, we find that the softmax temperature τ can be annealed according to a variety
of schedules and still perform well. If τ is a learned parameter (rather than annealed via a fixed
schedule), this scheme can be interpreted as entropy regularization [Szegedy et al., 2015, Pereyra
et al., 2016], where the Gumbel-Softmax distribution can adaptively adjust the “confidence” of
proposed samples during the training process.

2.2 Straight-Through Gumbel-Softmax Estimator

Continuous relaxations of one-hot vectors are suitable for problems such as learning hidden repre-
sentations and sequence modeling. For scenarios in which we are constrained to sampling discrete
values (e.g. from a discrete action space for reinforcement learning, or quantized compression), we
discretize y using arg max but use our continuous approximation in the backward pass by approxi-
mating ∇θz ≈ ∇θy. We call this the Straight-Through (ST) Gumbel Estimator, as it is reminiscent
of the biased path-derivative estimator described in Bengio et al. [2013]. ST Gumbel-Softmax allows
samples to be sparse even when the temperature τ is high.

3 Related Work

In this section we review existing stochastic gradient estimation techniques for discrete variables
(illustrated in Figure 2). Consider a stochastic computation graph [Schulman et al., 2015] with
discrete random variable z whose distribution depends on parameter θ, and cost function f(z).
The objective is to minimize the expected cost L(θ) = Ez∼pθ(z)[f(z)] via gradient descent, which
requires us to estimate∇θEz∼pθ(z)[f(z)].

3.1 Path Derivative Gradient Estimators

For distributions that are reparameterizable, we can compute the sample z as a deterministic function
g of the parameters θ and an independent random variable ε, so that z = g(θ, ε). The path-wise
gradients from f to θ can then be computed without encountering any stochastic nodes:

∂

∂θ
Ez∼pθ [f(z))] =

∂

∂θ
Eε [f(g(θ, ε))] = Eε∼pε

[
∂f

∂g

∂g

∂θ

]
(4)

For example, the normal distribution z ∼ N (µ, σ) can be re-written as µ + σ · N (0, 1), making
it trivial to compute ∂z/∂µ and ∂z/∂σ. This reparameterization trick is commonly applied to train-
ing variational autooencoders with continuous latent variables using backpropagtion [Kingma and
Welling, 2013, Rezende et al., 2014b]. As shown in Figure 2, we exploit such a trick in the con-
struction of the Gumbel-Softmax estimator.

Biased path derivative estimators can be utilized even when z is not reparameterizable. In general,
we can approximate ∇θz ≈ ∇θm(θ), where m is a differentiable proxy for the stochastic sample.
For Bernoulli variables with mean parameter θ, the Straight-Through (ST) estimator [Bengio et al.,
2013] approximates m = µθ(z), implying ∇θm = 1. For k = 2 (Bernoulli), ST Gumbel-Softmax
is similar to the slope-annealed Straight-Through estimator proposed by Chung et al. [2016], but
uses a softmax instead of a hard sigmoid to determine the slope.
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Figure 2: Gradient estimation in stochastic computation graphs. (1) ∇θf(x) can be computed via
backpropagation if x(θ) is deterministic and differentiable. (2) The presence of stochastic node
z precludes backpropagation as the sampler function does not have a well-defined gradient. (3)
The score function estimator and its variants (NVIL, DARN, MuProp, VIMCO) obtain an unbiased
estimate of∇θf(x) by backpropagating along a surrogate loss f̂ log pθ(z), where f̂ = f(x)− b and
b is a baseline for variance reduction. (4) The Straight-Through estimator, developed primarily for
Bernoulli variables, approximates ∇θz ≈ 1. (5) Gumbel-Softmax is a path derivative estimator for
a continuous distribution y that approximates z. Reparameterization allows gradients to flow from
f(y) to θ. y can be annealed to one-hot categorical variables over the course of training.

One limitation of the ST estimator is that backpropagating with respect to the sample-independent
mean may cause discrepancies between the forward and backward pass, leading to higher variance.
Gumbel-Softmax avoids this problem because each sample y is a differentiable proxy of the corre-
sponding discrete sample z.

3.2 Score Function-Based Gradient Estimators

The score function estimator (SF, also referred to as REINFORCE [Williams, 1992] and likelihood
ratio estimator [Glynn, 1990]) uses the identity ∇θ log pθ(z) = pθ(z)∇θ log pθ(z) to derive the
following unbiased estimator:

∇θEz [f(z)] = Ez [f(z)∇θ log pθ(z)] (5)

SF only requires that pθ(z) is continuous in θ, and does not require backpropagating through f or
the sample z. However, SF suffers from high variance and is consequently slow to converge. In
particular, the variance of SF scales linearly with the number of dimensions of the sample vector
[Rezende et al., 2014a], making it especially challenging to use for categorical distributions.

The variance of a score function estimator can be reduced by subtracting a control variate b(z) from
the learning signal f , and adding back its analytical expectation µb = Ez [b(z)∇θ log pθ(z)] to keep
the estimator unbiased:

∇θEz [f(z)] = Ez [f(z)∇θ log pθ(z) + (b(z)∇θ log pθ(z)− b(z)∇θ log pθ(z))] (6)
= Ez [(f(z)− b(z))∇θ log pθ(z)] + µb (7)

We briefly summarize recent stochastic gradient estimators that utilize control variates. We direct
the reader to Gu et al. [2016] for further detail on these techniques.
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• NVIL [Mnih and Gregor, 2014] uses two baselines: (1) a moving average f̄ of f to cen-
ter the learning signal, and (2) an input-dependent baseline computed by a 1-layer neural
network fitted to f − f̄ (a control variate for the centered learning signal itself). Finally,
variance normalization divides the learning signal by max(1, σf ), where σ2

f is a moving
average of Var[f ].

• DARN [Gregor et al., 2013] uses b = f(z̄) + f ′(z̄)(z − z̄), where the baseline corre-
sponds to the first-order Taylor approximation of f(z) from f(z̄). z̄ is chosen to be 1/2 for
Bernoulli variables, which makes the estimator biased for non-quadratic f , since it ignores
the correction term µb in the estimator expression.

• MuProp [Gu et al., 2016] also models the baseline as a first-order Taylor expansion: b =
f(z̄) + f ′(z̄)(z − z̄) and µb = f ′(z̄)∇θEz [z]. To overcome backpropagation through
discrete sampling, a mean-field approximation fMF (µθ(z)) is used in place of f(z) to
compute the baseline and derive the relevant gradients.

• VIMCO [Mnih and Rezende, 2016] is a gradient estimator for multi-sample objectives
that uses the mean of other samples b = 1/m

∑
j 6=i f(zj) to construct a baseline for each

sample zi ∈ z1:m. We exclude VIMCO from our experiments because we are comparing
estimators for single-sample objectives, although Gumbel-Softmax can be easily extended
to multi-sample objectives.

3.3 Semi-Supervised Generative Models

Semi-supervised learning considers the problem of learning from both labeled data (x, y) ∼ DL
and unlabeled data x ∼ DU , where x are observations (i.e. images) and y are corresponding labels
(e.g. semantic class). For semi-supervised classification, Kingma et al. [2014] propose a variational
autoencoder (VAE) whose latent state is the joint distribution over a Gaussian “style” variable z
and a categorical “semantic class” variable y (Figure 6, Appendix). The VAE objective trains a
discriminative network qφ(y|x), inference network qφ(z|x, y), and generative network pθ(x|y, z)
end-to-end by maximizing a variational lower bound on the log-likelihood of the observation under
the generative model. For labeled data, the class y is observed, so inference is only done on z ∼
q(z|x, y). The variational lower bound on labeled data is given by:

log pθ(x, y) ≥ −L(x, y) = Ez∼qφ(z|x,y) [log pθ(x|y, z)]−KL[q(z|x, y)||pθ(y)p(z)] (8)

For unlabeled data, difficulties arise because the categorical distribution is not reparameterizable.
Kingma et al. [2014] approach this by marginalizing out y over all classes, so that for unlabeled
data, inference is still on qφ(z|x, y) for each y. The lower bound on unlabeled data is:

log pθ(x) ≥ −U(x) = Ez∼qφ(y,z|x)[log pθ(x|y, z) + log pθ(y) + log p(z)− qφ(y, z|x)] (9)

=
∑
y

qφ(y|x)(−L(x, y) +H(qφ(y|x))) (10)

The full maximization objective is:

J = E(x,y)∼DL [−L(x, y)] + Ex∼DU [−U(x)] + α · E(x,y)∼DL [log qφ(y|x)] (11)

where α is the scalar trade-off between the generative and discriminative objectives.

One limitation of this approach is that marginalization over all k class values becomes prohibitively
expensive for models with a large number of classes. If D, I,G are the computational cost of sam-
pling from qφ(y|x), qφ(z|x, y), and pθ(x|y, z) respectively, then training the unsupervised objective
requiresO(D+ k(I +G)) for each forward/backward step. In contrast, Gumbel-Softmax allows us
to backpropagate through y ∼ qφ(y|x) for single sample gradient estimation, and achieves a cost of
O(D+ I+G) per training step. Experimental comparisons in training speed are shown in Figure 5.
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4 Experimental Results

In our first set of experiments, we compare Gumbel-Softmax and ST Gumbel-Softmax to other
stochastic gradient estimators: Score-Function (SF), DARN, MuProp, Straight-Through (ST), and
Slope-Annealed ST. Each estimator is evaluated on two tasks: (1) structured output prediction and
(2) variational training of generative models. We use the MNIST dataset with fixed binarization
for training and evaluation, which is common practice for evaluating stochastic gradient estimators
[Salakhutdinov and Murray, 2008, Larochelle and Murray, 2011].

Learning rates are chosen from {3e−5, 1e−5, 3e−4, 1e−4, 3e−3, 1e−3}; we select the best learn-
ing rate for each estimator using the MNIST validation set, and report performance on the test
set. Samples drawn from the Gumbel-Softmax distribution are continuous during training, but are
discretized to one-hot vectors during evaluation. We also found that variance normalization was nec-
essary to obtain competitive performance for SF, DARN, and MuProp. We used sigmoid activation
functions for binary (Bernoulli) neural networks and softmax activations for categorical variables.
Models were trained using stochastic gradient descent with momentum 0.9.

4.1 Structured Output Prediction with Stochastic Binary Networks

The objective of structured output prediction is to predict the lower half of a 28 × 28 MNIST digit
given the top half of the image (14×28). This is a common benchmark for training stochastic binary
networks (SBN) [Raiko et al., 2014, Gu et al., 2016, Mnih and Rezende, 2016]. The minimization
objective for this conditional generative model is an importance-sampled estimate of the likelihood
objective, Eh∼pθ(hi|xupper)

[
1
m

∑m
i=1 log pθ(xlower|hi)

]
, where m = 1 is used for training and m =

1000 is used for evaluation.

We trained a SBN with two hidden layers of 200 units each. This corresponds to either 200 Bernoulli
variables (denoted as 392-200-200-392) or 20 categorical variables (each with 10 classes) with bi-
narized activations (denoted as 392-(20× 10)-(20× 10)-392).

As shown in Figure 3, ST Gumbel-Softmax is on par with the other estimators for Bernoulli vari-
ables and outperforms on categorical variables. Meanwhile, Gumbel-Softmax outperforms other
estimators on both Bernoulli and Categorical variables. We found that it was not necessary to anneal
the softmax temperature for this task, and used a fixed τ = 1.
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Figure 3: Test loss (negative log-likelihood) on the structured output prediction task with binarized
MNIST using a stochastic binary network with (a) Bernoulli latent variables (392-200-200-392) and
(b) categorical latent variables (392-(20× 10)-(20× 10)-392).

4.2 Generative Modeling with Variational Autoencoders

We train variational autoencoders [Kingma and Welling, 2013], where the objective is to learn a
generative model of binary MNIST images. In our experiments, we modeled the latent variable as
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a single hidden layer with 200 Bernoulli variables or 20 categorical variables (20 × 10). We use
a uniform categorical prior rather than a Gumbel-Softmax prior in the training objective. Thus,
the minimization objective during training is no longer a variational bound if the samples are not
discrete. In practice, we find that optimizing this objective in combination with temperature anneal-
ing still minimizes true variational bounds on validation and test sets. Like the structured output
prediction task, we use a multi-sample bound for evaluation with m = 1000.

The temperature is annealed using the schedule τ = max(0.5, exp(−rt)) of the global training step
t, where τ is updated every N steps. N ∈ {500, 1000} and r ∈ {1e−5, 1e−4} are hyperparameters
for which we select the best-performing estimator on the validation set and report test performance.

As shown in Figure 4, ST Gumbel-Softmax outperforms other estimators for Categorical variables,
and Gumbel-Softmax drastically outperforms other estimators in both Bernoulli and Categorical
variables.
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Figure 4: Test loss (negative variational lower bound) on binarized MNIST VAE with (a) Bernoulli
latent variables (784− 200− 784) and (b) categorical latent variables (784− (20× 10)− 200).

Table 1: The Gumbel-Softmax estimator outperforms other estimators on Bernoulli and Categorical
latent variables. For the structured output prediction (SBN) task, numbers correspond to negative
log-likelihoods (nats) of input images (lower is better). For the VAE task, numbers correspond to
negative variational lower bounds (nats) on the log-likelihood (lower is better).

SF DARN MuProp ST Annealed ST Gumbel-S. ST Gumbel-S.
SBN (Bern.) 72.0 59.7 58.9 58.9 58.7 58.5 59.3
SBN (Cat.) 73.1 67.9 63.0 61.8 61.1 59.0 59.7

VAE (Bern.) 112.2 110.9 109.7 116.0 111.5 105.0 111.5
VAE (Cat.) 110.6 128.8 107.0 110.9 107.8 101.5 107.8

4.3 Generative Semi-Supervised Classification

We apply the Gumbel-Softmax estimator to semi-supervised classification on the binary MNIST
dataset. We compare the original marginalization-based inference approach [Kingma et al., 2014]
to single-sample inference with Gumbel-Softmax and ST Gumbel-Softmax.

We trained on a dataset consisting of 100 labeled examples (distributed evenly among each of the
10 classes) and 50,000 unlabeled examples, with dynamic binarization of the unlabeled examples
for each minibatch. The discriminative model qφ(y|x) and inference model qφ(z|x, y) are each im-
plemented as 3-layer convolutional neural networks with ReLU activation functions. The generative
model pθ(x|y, z) is a 4-layer convolutional-transpose network with ReLU activations. Experimental
details are provided in Appendix A.
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Estimators were trained and evaluated against several values of α = {0.1, 0.2, 0.3, 0.8, 1.0} and
the best unlabeled classification results for test sets were selected for each estimator and reported
in Table 2. We used an annealing schedule of τ = max(0.5, exp(−3e−5 · t)), updated every 2000
steps.

In Kingma et al. [2014], inference over the latent state is done by marginalizing out y and using the
reparameterization trick for sampling from qφ(z|x, y). However, this approach has a computational
cost that scales linearly with the number of classes. Gumbel-Softmax allows us to backpropagate
directly through single samples from the joint qφ(y, z|x), achieving drastic speedups in training
without compromising generative or classification performance. (Table 2, Figure 5).

Table 2: Marginalizing over y and single-sample variational inference perform equally well when
applied to image classification on the binarized MNIST dataset [Larochelle and Murray, 2011]. We
report variational lower bounds and image classification accuracy for unlabeled data in the test set.

ELBO Accuracy
Marginalization -106.8 92.6%
Gumbel -109.6 92.4%
ST Gumbel-Softmax -110.7 93.6%

In Figure 5, we show how Gumbel-Softmax versus marginalization scales with the number of cat-
egorical classes. For these experiments, we use MNIST images with randomly generated labels.
Training the model with the Gumbel-Softmax estimator is 2× as fast for 10 classes and 9.9× as fast
for 100 classes.
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Figure 5: Gumbel-Softmax allows us to backpropagate through samples from the posterior qφ(y|x),
providing a scalable method for semi-supervised learning for tasks with a large number of
classes. (a) Comparison of training speed (steps/sec) between Gumbel-Softmax and marginaliza-
tion [Kingma et al., 2014] on a semi-supervised VAE. Evaluations were performed on a GTX Titan
X R© GPU. (b) Visualization of MNIST analogies generated by varying style variable z across each
row and class variable y across each column.

5 Discussion

The primary contribution of this work is the reparameterizable Gumbel-Softmax distribution, whose
corresponding estimator affords low-variance path-derivative gradients for the categorical distri-
bution. We show that Gumbel-Softmax and Straight-Through Gumbel-Softmax are effective on
structured output prediction and variational autoencoder tasks, outperforming existing stochastic
gradient estimators for both Bernoulli and categorical latent variables. Finally, Gumbel-Softmax
enables dramatic speedups in inference over discrete latent variables.
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A Semi-Supervised Classification Model

Figures 6 and 7 describe the architecture used in our experiments for semi-supervised classification (Section
4.3).

Figure 6: Semi-supervised generative model proposed by Kingma et al. [2014]. (a) Generative
model pθ(x|y, z) synthesizes images from latent Gaussian “style” variable z and categorical class
variable y. (b) Inference model qφ(y, z|x) samples latent state y, z given x. Gaussian z can be
differentiated with respect to its parameters because it is reparameterizable. In previous work, when
y is not observed, training the VAE objective requires marginalizing over all values of y. (c) Gumbel-
Softmax reparameterizes y so that backpropagation is also possible through y without encountering
stochastic nodes.

B Deriving the density of the Gumbel-Softmax distribution

Here we derive the probability density function of the Gumbel-Softmax distribution with probabilities π1, ..., πk
and temperature τ . We first define the logits xi = log πi, and Gumbel samples g1, ..., gk, where gi ∼
Gumbel(0, 1). A sample from the Gumbel-Softmax can then be computed as:

yi =
exp ((xi + gi)/τ)∑k
j=1 exp ((xj + gj)/τ)

for i = 1, ..., k (12)

B.1 Centered Gumbel density

The mapping from the Gumbel samples g to the Gumbel-Softmax sample y is not invertible as the normalization
of the softmax operation removes one degree of freedom. To compensate for this, we define an equivalent
sampling process that subtracts off the last element, (xk + gk)/τ before the softmax:

yi =
exp ((xi + gi − (xk + gk))/τ)∑k
j=1 exp ((xj + gj − (xk + gk))/τ)

for i = 1, ..., k (13)

To derive the density of this equivalent sampling process, we first derive the density for the ”centered” multi-
variate Gumbel density corresponding to:

ui = xi + gi − (xk + gk) for i = 1, ..., k − 1 (14)
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Figure 7: Network architecture for (a) classification qφ(y|x) (b) inference qφ(z|x, y), and (c) gen-
erative pθ(x|y, z) models. The output of these networks parameterize Categorical, Gaussian, and
Bernoulli distributions which we sample from.

where gi ∼ Gumbel(0, 1). Note the probability density of a Gumbel distribution with scale parameter β = 1

and mean µ at z is: f(z, µ) = eµ−z−e
µ−z

. We can now compute the density of this distribution by marginal-
izing out the last Gumbel sample, gk:

p(u1, ..., uk−1) =

∫ ∞
−∞

dgk p(u1, ..., uk|gk)p(gk)

=

∫ ∞
−∞

dgk p(gk)

k−1∏
i=1

p(ui|gk)

=

∫ ∞
−∞

dgk f(gk, 0)

k−1∏
i=1

f(xk + gk, xi − ui)

=

∫ ∞
−∞

dgk e
−gk−e−gk

k−1∏
i=1

exi−ui−xk−gk−e
xi−ui−xk−gk

We perform a change of variables with v = e−gk , so dv = −e−gkdgk and dgk = −dv egk = dv/v, and
define uk = 0 to simplify notation:

p(u1, ..., uk,−1) = δ(uk = 0)

∫ ∞
0

dv
1

v
vexk−v

k−1∏
i=1

vexi−ui−xk−ve
xi−ui−xk (15)

= exp

(
xk +

k−1∑
i=1

(xi − ui)

)(
exk +

k−1∑
i=1

(
exi−ui

))−k
Γ(k) (16)

= Γ(k) exp

(
k∑
i=1

(xi − ui)

)(
k∑
i=1

(
exi−ui

))−k
(17)

= Γ(k)

(
k∏
i=1

exp (xi − ui)

)(
k∑
i=1

exp (xi − ui)

)−k
(18)
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B.2 Transforming to a Gumbel-Softmax

Given samples u1, ..., uk,−1 from the centered Gumbel distribution, we can apply a deterministic transforma-
tion h to yield the first k − 1 coordinates of the sample from the Gumbel-Softmax:

y1:k = h(u1:k−1), h =
exp(ui/τ)

1 +
∑k−1
j=1 exp(uj/τ)

(19)

Note that the final coordinate probability, yk, is fixed given the first k − 1 as
∑k
i=1 yi = 1:

yk =

(
1 +

k−1∑
j=1

exp(uj/τ)

)−1

(20)

We can thus compute the probability of a sample from the Gumbel-Softmax using the change of variables
formula on only the first k − 1 variables:

p(y1:k) = p
(
h−1(y1:k−1)

) ∣∣∣∣∂h−1(y1:k−1)

∂y1:k−1

∣∣∣∣ (21)

So to compute the probability of the Gumbel-Softmax we need two more pieces: the inverse of h and its
Jacobian determinant. The inverse of h is:

h−1(y1:k−1) = τ ×

(
log yi − log

(
1−

k−1∑
j=1

yj

))
(22)

(23)

The determinant of the Jacobian can then be computed:∣∣∣∣∂h−1(y1:k−1)

∂y1:k−1

∣∣∣∣ = τk−1

(
1−

k−1∑
j=1

yj

)
k−1∏
i=1

y−1
i = τk−1

k∏
i=1

y−1
i (24)

We can then plug into the change of variables formula (Eq. 21) using the density of the centered Gumbel
(Eq.15), the inverse of h (Eq. 22) and its Jacobian determinant (Eq. 24):

p(y1, .., yk) = Γ(k)

(
k∏
i=1

exp (xi)
yτk
yτi

)(
k∑
i=1

exp (xi)
yτk
yτi

)−k
τk−1

k∏
i=1

y−1
i (25)

= Γ(k)τk−1

(
k∑
i=1

exp (xi) /y
τ
i

)−k k∏
i=1

(
exp (xi) /y

τ+1
i

)
(26)

(27)
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