
Improving the Identifiability of Neural Networks for
Bayesian Inference

Arya A. Pourzanjani∗, Richard M. Jiang∗, Linda R. Petzold
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, CA 93106

arya@ucsb.edu,rmjiang@ucsb.edu,petzold@cs.ucsb.edu

1 Introduction

Accurate inference of the parameters in the highly complex and multi-modal likelihoods of Neural
Networks(NNs) is incredibly difficult for any algorithm. In part, this challenge is caused by the
significant over-parameterization of the model, resulting in many equivalent solutions and thus a
model unidentifiability problem. In this paper, we explore the unidentifiability problem for NNs as it
manifests in two ways: arbitrary permutations of the hidden nodes, which we denote as weight-space
symmetry, and arbitrary scaling under rectified linear-unit (ReLU) nonlinearites, which we denote
as scaling symmetry. We show how these unidentifiabilities pose issues for both Markov Chain
Monte Carlo (MCMC) and Variational Inference (VI). Finally, we introduce two reparameterizations
of the model in the form of parameter constraints and prove that they resolve the aforementioned
unidentifiability issues, showing some experiments and offering implementations in the form of
coordinate transforms.

2 Unidentifiability of Neural Networks

Let (x1, x2) be the input nodes to a NN with 1 hidden layer of 2 nodes, (h1, h2) and a single output
node y. We define the following standard setup for a single layer.

h1 = σ(W11x1 +W21x2 + b1)

h2 = σ(W12x1 +W22x2 + b2)

y = w1h1 + w2h2 + c = w2h2 + w1h1 + c

Under this setup, we describe and define the weight-space symmetry and the scaling symmetry
unidentifiabilities and note that these holds in wider and deeper structures as well. We note that it is
likely that further unidentifiabilies exist in the formulation of the neural networks. In this work, we
only tackle these two with hopes of further investigation in the future.

2.1 Weight-Space Symmetry

Definition 2.1. Weight-space symmetry is the unidentifiability induced in NNs by swapping both
the input and output weights and biases of any two hidden units in the same layer [2, p.277]. In our
setting, this is equivalent to switching the labels of h1 and h2, which leaves y invariant.

Weight-space symmetry arises due to the nature of the output operations in neural networks. Hidden
nodes are fully exchangeable as they are added together to obtain the output of the next layer. As this
is a label switching problem, this gives way to a factorially growing number of equivalent modes as
the number of hidden nodes and hidden layers increase.
∗Equal Contributors

Second workshop on Bayesian Deep Learning (NIPS 2017), Long Beach, CA, USA.



2.2 Scaling Symmetry

Definition 2.2. Scaling symmetry is the unidentifiability induced in ReLU NNs by arbitrary scaling
of the input weights and biases of a hidden node by a real scalar α and scaling the output by 1/α.
This can be seen in our example by multiplying W11 and W21 by α and multiplying w1 by 1/α.
Under the ReLU, this scaling leaves y invariant.

More generally, scaling symmetry is exclusive to nonlinearities with the property σ(αx) = ασ(x)
where α is a real scalar. Notably, this includes the ReLU. In this case, we can arbitrarily scale all
of the weights and biases going into a hidden layer by a real scalar, α, and then scale the output
weights by 1/α, resulting in the exact same output. Geometrically, this produces a high-dimensional
hyperbola of equivalent solutions [2, p.277].

3 Adding Parameter Constraints for Identifiability

To resolve these two issues, we propose a set of reparameterizations of NNs in the form of parameter
constraints on the weights and biases. We implement these constraints in the form of a coordinate
transformation from constrained to unconstrained space. This is a common technique in the Bayesian
inference literature that allows for inference methods to remain unaltered [1; 4]. Such transforms
require both an invertible mapping and a corresponding change of probability measure, which
fortunately in our case has been solved for these two cases.

3.1 Bias Ordering Constraint

To deal with the arbitrary permutations from weight space symmetry, we introduce the constraint that
biases must be ordered. More specifically, the bias ordering constraint restricts the bias vectors in
each hidden layer to be ordered in such a way that

b
(1)
L < b

(2)
L < · · · < b

(NL)
L . (1)

Theorem 3.1. Placing an ordering constraint on the biases of a neural network layer eliminates the
weight space symmetry.

The bias ordering constraint is implemented by performing inference on the log of the differences of
entries and transforming to the constrained parameters for evaluation [1].

3.2 Unit-Length Weight Vector Constraint

To resolve the scaling symmetry, we introduce the unit-vector weight constraint, which constrains
the vector of weights of going into a hidden node to be of unit norm.
Theorem 3.2. Any configuration of weights for a deep ReLU neural network with non-zero weight
vectors has an equivalent unit-vector constrained weight configuration with the last layer of weights
unconstrained.

The unit-vector constraint is implemented by performing inference on an unconstrained space via
the Givens’ Transform, a transform from the space of unit-vectors and orthonormal matrices to
unconstrained space [5].

4 Experiments

4.1 Synthetic Data

We generate 100 data points from a fully connected single ReLU layer Neural Network with 2
hidden nodes using the following parameters: W1 = [[1/

√
2,−1/

√
2], [1/

√
2, 1/
√
2]], b1 = [0, 1],

W2 = [[1/
√
2, 1/
√
2], b2 = [5] with added univariate Gaussian noise. We then infer the constrained

and unconstrained models, placing N (0, 1) priors on the parameters, using HMC, Mean-Field ADVI,
and Full-Rank ADVI in Stan [1]. In the unconstrained model, several equivalent solutions with equal
posterior density exist along a high-dimensional hyperbola. This results in a posterior with high

2



Figure 1: (Left) Posterior samples of W1[1, 1] and W2[1] illustrate how the model identifiability issue
results in a pathological posterior over many equivalent solutions and with unnaturally high-curvature.
This posterior is not only difficult to sample from efficiently, but difficult for VI to approximate,
which results in biased posterior predictive distributions of new samples (Right). Using unit vectors
via the Givens Transform results in a much more well-behaved posterior that is easier to sample
from and approximate using VI. This amounts to more accurate estimates and posterior predictive
uncertainties of new data.

Split 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Unconstrained 0.37 0.31 0.30 0.39 0.34 0.42 0.43 0.34 0.46 0.33 0.38 0.47 0.42 0.37 0.36
Constrained 0.36 0.28 0.28 0.31 0.29 0.31 0.39 0.31 0.45 0.29 0.38 0.31 0.37 0.27 0.27
Table 1: Mean-Square Error (MSE) on 15 test sets using unconstrained and constrained model.

curvature that is difficult to explore or approximate using VI, which itself results in biased posterior
predictive distributions of target variables (Figure 4.1 [right]). The constrained approach using the
Givens Transform removes many of the equivalent solutions, resulting in a much more well-behaved
posterior. In practice, we found the number of effective samples and average NUTS tree depth to be
lower in the constrained case.

4.2 Boston Housing

The Boston Housing dataset consists of the price and other features of 506 unique homes in the
Boston area [3]. We modeled this task with a 50 node single hidden layer ReLU neural network and
inferred the parameters using both the unconstrained and constrained parameterizations under 15
different 80/20 train/test splits. Inference was done using the NUTS algorithm in Stan. We use the
mean of the posterior predictive distributions and compared them to the true values from the test
set to obtain a Mean-Square Error (MSE) in both settings. In every case the constrained version
using the Givens Transform outperformed the unconstrained version (Table 4.2). Similarly we use
the posterior predictive distributions on the test sets to compare how often the 95% credible interval
of the posterior covered the true value. The constrained distribution has test examples outside of the
95% credible interval far less often, as the constrained posterior is much easier to explore (Table
4.2). Paired Wilcoxon tests of the MSE and coverage using the unconstrained versus the constrained
models results in p-values of 0.009 and 0.003, suggesting that better performance of the constrained
model was not due to pure chance alone.

5 Discussion

Reparameterization of problems in Bayesian Inference is pivotal to obtaining good performance
and results for inference. In this short work, we explore two ways in which we can reparameterize
Neural Networks to eliminate excess multi-modalities and equivalences. We note that, although the
reparameterization eliminates some of the clear multi-modalities, they do not make the likelihood
nearly convex nor simple. Multiple modes still exist, and chains as well as approximate posteriors
will still result in mode finding behavior. We hope that there is more research into capturing the
true posteriors, as this epistemic uncertainty can manifest itself in the predictions made by Neural
Networks under poor inference methods.

3



Split 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Unconstrained 0.05 0.08 0.11 0.09 0.13 0.13 0.12 0.09 0.15 0.06 0.13 0.11 0.13 0.10 0.13
Constrained 0.08 0.05 0.05 0.06 0.08 0.10 0.04 0.11 0.07 0.06 0.09 0.03 0.12 0.05 0.09
Table 2: Posterior predictive coverage on 15 test sets using unconstrained and constrained model.

References
[1] Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker,

M. A., Guo, J., Li, P. and Riddell, A. [2016], ‘Stan: A probabilistic programming language’,
Journal of Statistical Software 20, 1–37.

[2] Goodfellow, I., Bengio, Y. and Courville, A. [2016], Deep learning, MIT press.

[3] Harrison, D. and Rubinfeld, D. L. [1978], ‘Hedonic housing prices and the demand for clean
air’, Journal of environmental economics and management 5(1), 81–102.

[4] Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A. and Blei, D. M. [2016], ‘Automatic
differentiation variational inference’, arXiv preprint arXiv:1603.00788 .

[5] Pourzanjani, A. A., Jiang, R. M., Atzberger, P. J. and Petzold, L. R. [2017], ‘General Bayesian
Inference over the Stiefel Manifold via the Givens Transform’, ArXiv e-prints .

4



A Proof to Theorem 3.1

Proof. Suppose we impose a bias ordering constraint on a neural network. Let hi and hj be two hidden
nodes such that hi = σ(WiX + bi), hj = σ(WjX + bj), and y = σ(

∑
k wkhk) with bi < bj , i < j.

Suppose we permute the input and output weights and biases of hi and hj , swapping the labels but producing an
equivalent solution from weight-space symmetry. However, this violates the bias-ordering constraint because
now bi > bj , i < j. Thus permutations of arbitrary hidden nodes are not a valid solution.

B Proof to Theorem 3.2

Proof. We proceed with a constructive argument. Let W1 be the N ×M weight matrix of the first hidden layer
in the neural network with columns w(i)

1 . We transform W1 to W ′1, by dividing each column by it’s norm so
that w(i)

1 = w
(i)
1 /‖w(i)

1 ‖. Under this transform, h(i)′

1 = σ(Xw
(i)′

1 + b
(i)
1 /‖w(i)

1 ‖) = (1/‖w(i)
1 ‖)h

(i)
1 by the

property of the ReLU. Let W2 be the second weight matrix. Then for the second layer with respect to W ′1,
h
(i)′

2 = σ(
∑

k‖w
(k)
1 ‖h

(k)′

1 w
(ik)
2 + b

(i)
2 ), which tells us that this is equivalent to multiplying the i-th row of W2

by ‖w(i)
1 ‖. Denote Ŵ2 to be W2 with rows scaled by the previous layer’s norms. At this point, we can consider

Ŵ2 as the first layer of a NN, as no transformation will propagate back to previous layers due to the structure of
the NN. Thus, we can repeat the same process and transform Ŵ2 to Ŵ2

′
. We continue this process until the final

layer, noting that each previous layer now has unit-length columns. Let ŴL be the weight matrix of the final
layer as a process of transforming all layers before it. The output can now be written as y =

∑
i hLŵL

(i) + bL.
We keep this layer unconstrained as y is fixed. The entire network now has unit-vector columns except the final
set of weights, which absorbs the scaling of the previous layers, but produces an equivalent for output.

5


	Introduction
	Unidentifiability of Neural Networks
	Weight-Space Symmetry
	Scaling Symmetry

	Adding Parameter Constraints for Identifiability
	Bias Ordering Constraint
	Unit-Length Weight Vector Constraint

	Experiments
	Synthetic Data
	Boston Housing

	Discussion
	Proof to Theorem 3.1
	Proof to Theorem 3.2

