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Abstract

As deep neural networks (DNNs) are applied to increasingly challenging problems, they will need to
be able to represent their own uncertainty. Modeling uncertainty is one of the key features of Bayesian
methods. Using Bernoulli dropout with sampling at prediction time has recently been proposed as
an efficient and well performing variational inference method for DNNs. However, sampling from
other multiplicative noise based variational distributions has not been investigated in depth. We
evaluated Bayesian DNNs trained with Bernoulli or Gaussian multiplicative masking of either the
units (dropout) or the weights (dropconnect). We tested the calibration of the probabilistic predictions
of Bayesian convolutional neural networks (CNNs) on MNIST and CIFAR-10. Sampling at prediction
time increased the calibration of the DNNs’ probabalistic predictions. Sampling weights, whether
Gaussian or Bernoulli, led to more robust representation of uncertainty compared to sampling of units.
However, using either Gaussian or Bernoulli dropout led to increased test set classification accuracy.
Based on these findings we used both Bernoulli dropout and Gaussian dropconnect concurrently,
which we show approximates the use of a spike-and-slab variational distribution without increasing
the number of learned parameters. We found that spike-and-slab sampling had higher test set
performance than Gaussian dropconnect and more robustly represented its uncertainty compared to
Bernoulli dropout.

1 Introduction

Deep neural networks (DNNs), particularly convolutional neural networks (CNNs), have recently
been used to solve complex perceptual and decision tasks [15; 21; 23]. While these models take into
account aleatoric uncertainty via their softmax output (i.e. the uncertainty present in the training
data), they do not take into account epistemic uncertainty (i.e. parameter uncertainty) [12]. Bayesian
DNNs attempt to learn a distribution over their parameters thereby allowing for the computation of
the uncertainty of their outputs given the parameters. However, ideal Bayesian methods do not scale
well due to the difficulty in computing the posterior of a network’s parameters.

As a result, several approximate Bayesian methods have been proposed for DNNs. Using the Laplace
approximation was proposed by [18]. Using Markov chain Monte Carlo (MCMC) has been suggested
to estimate the posterior of the networks weights given the training data [22; 26] . Using expectation
propagation has also been proposed [11; 8]. However, these methods can be difficult to implement
for the very large CNNs commonly used for object recognition. Variational inference methods
have also been used to make Bayesian NNs more tractable[9; 1; 7; 2]. Due in large part to the fact
that these methods substantially increase the number of parameters in a network, they have not
been extensively applied to large DNNs. Gal and Ghahramani [5] and Kingma et al. [13] bypassed
this issue by developing Bayesian CNNs using Bernoulli and Gaussian dropout [24], respectively.
While independent weight sampling with additive Gaussian noise has been investigated [9; 1; 7; 2],
independently sampling weights using multiplicative Bernoulli noise, i.e. dropconnect [25], or
independently sampled multiplicative Gaussian noise has not been thoroughly evaluated.
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In addition to Bernoulli and Gaussian distributions, spike-and-slab distributions, a combination of the
two, have been investigated, particularly for linear models [20; 19; 6; 10]. Interestingly, Bernoulli
dropout and dropconnect can be seen as approximations to spike-and-slab distributions for units
and weights, respectively [17; 3]. Spike-and-slab variational distributions have been implemented
using Bernoulli dropout with additive weight noise sampled from a Gaussian with a learned standard
deviation [17]. This approach more than doubled the number of learned parameters, since the
mean and the standard deviation of each weight as well as the dropout rate for each unit were
learned. However, this method did not consistently outperform standard neural networks. Gal [3]
also discussed motivations for spike-and-slab variational distributions, but did not suggest a practical
implementation.

We evaluated the performance Bayesian CNNs with different variational distributions on CIFAR-
10. We also investigate how adding Gaussian image noise with varying standard deviations to the
test set affected each network’s learned uncertainty. We did this to test how networks responded
to inputs not drawn from the data distribution used to create the training and test sets. We also
propose an approximation of the spike-and-slab variational inference based on Bernoulli dropout
and Gaussian dropconnect, which combines the advantages of Gaussian dropconnect and Bernoulli
dropout sampling leading to better uncertainty estimates and good test set generalization without
increasing the number of learned parameters.

2 Methods

2.1 Bayesian Deep Neural Networks

DNNs are commonly trained by finding the maximum a posteriori (MAP) weights given the training
data (Dtrain) and a prior over the weight matrix W (p(W )). However, ideal Bayesian learning
would involve computing the full posterior. This can be intractable due to both the difficulty in
calculating p(Dtrain) and in calculating the joint distribution of a large number of parameters.
Instead, p(W |Dtrain) can be approximated using a variational distribution q(W ). This distribution
is constructed to allow for easy generation of samples. The objective of variational inference is to
optimize the variational parameters V so that the Kullblack-Leiber (KL) divergence between qV (W )
and p(W |Dtrain) is minimized [9; 1; 7; 2]:

V ∗ = argmin
V

KL[qV (W )||p(W )]−
∫
qV (W ) log p(Dtrain|W )dW (1)

Using Monte Carlo (MC) methods to estimate EqV (w)[log p(Dtrain|W )], using weight samples
Ŵ i ∼ qV (W ), results in the following loss function:

L := KL(qV (W )||p(W ))− 1

n

n∑
i

log p(Dtrain|Ŵ i) (2)

MC sampling can also be used to estimate the probability of test data:

p(Dtest) ≈
1

n

n∑
i

p(Dtest|Ŵ i) (3)

2.2 Variational Distributions

The number and continuous nature of the parameters in DNNs makes sampling from the entire distri-
bution of possible weight matrices computationally challenging. However, variational distributions
can make sampling easier. In deep learning, the most common sampling method is using multi-
plicative noise masks drawn from some distribution. Several of these methods can be formulated as
variational distributions where weights are sampled by element-wise multiplication of the variational
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Figure 1: An illustration of sampling network weights using the different variational distributions.

parameters V , the n× n connection matrix with an element for each connection between the n units
in the network, by a mask M̂ , which is sampled from some probability distribution:

Ŵ = V ◦ M̂ where M̂ ∼ p(M) (4)

From this perspective, the difference between dropout and dropconnect, as well as Bernoulli and
Gaussian methods, is simply the probability distribution used to generate the mask sample (Figure 1).

2.2.1 Bernoulli Dropconnect & Dropout

In Bernoulli dropconnect, each element of the mask is sampled independently, so m̂i,j ∼
Bernoulli(1 − p) where p is the probability of dropping a connection. In Bernoulli dropout,
however, the weights are not sampled independently. Instead, one Bernoulli variable is sampled for
each row of the weight matrix, so m̂i,∗ ∼ Bernoulli(1− p) where p is the probability of dropping a
unit.

2.2.2 Gaussian Dropconnect & Dropout

In Gaussian dropconnect and dropout, ŵi,j is sampled from a Gaussian distribution centered at
variational parameter vi,j . This is accomplished by sampling the multiplicative mask using Gaussian
distributions with a mean of 1 and a variance of σ2

dc = p/(1 − p), which matches the mean and
variance of Bernoulli dropout when training time scaling is used [24]. In Gaussian dropconnect,
each element of the mask is sampled independently, which results in m̂i,j ∼ N (1, σ2

dc). In Gaussian
dropout, each element in a row has the same random variable, so m̂i,∗ ∼ N (1, σ2

dc). It can be shown
that using Gaussian dropconnect or dropout with L2-regularization leads to optimizing a stochastic
lower-bound of the variational objective function (See Supplementary Material).

2.2.3 Spike-and-Slab Dropout

A spike-and-slab distribution is the normalized linear combination of a "spike" of probability mass at
zero and a "slab" consisting of a Gaussian distribution. This spike-and-slab returns a 0 with probability
pspike or a random sample from a Gaussian distribution N (µslab, σ

2
slab) with probability 1− pspike.

We propose concurrently using Bernoulli dropout and Gaussian dropconnect to approximate the
use of a spike-and-slab variational distribution and spike-and-slab prior by optimizing a lower-
bound of the variational objective function (See Supplementary Material). In this formulation,
mi,j ∼ bi,∗N (1, σ2

dc), where bi,∗ ∼ Bern(1 − pdo) for each mask row and σ2
dc = pdc/(1 − pdc).

As for Bernoulli dropout, each row of the mask M is multiplied by 0 with probability pdo, otherwise
each element in that row is multiplied by a value independently sampled from a Gaussian distribution
as in Gaussian dropconnect. During non-sampling inference, spike-and-slab dropout uses the mean
weight values and, per Bernoulli dropout, multiplies unit outputs by 1− pdo.
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Figure 2: The probabalistic logistic regression decision boundaries of a linear network for Bernoulli
dropconnect (BDC), Gaussian dropconnect (GDC), Bernoulli dropout (BDO), Gaussian dropout
(GDO), and spike-and-slab dropout (SSD) with and without MC sampling compared to the decision
bondaries for the MAP solution and stochactic gradient Langevin dynamics (SGLD) [26].

3 Experiments

3.1 Logistic Regression

In order to visualize the effects of each variational distribution, we trained linear networks with
five hidden units to classify data drawn from two 2D multivariate Gaussian distributions. Multiple
linear units were used so that Bernoulli dropout would not dropout the only unit in the network. For
the dropout methods, unit sampling was performed on the linear hidden layer. For the dropconnect
methods, every weight was sampled. Dropout and dropconnect probabilities of p = 0.4 were used
for each of these networks, except for the spike-and-slab dropconnect probability which was 0.2. In
Figure 2, we show the decision boundaries learned by the various networks. Higher variability in the
decision boundaries corresponds to higher uncertainty. All of the MC sampling methods predict with
higher uncertainty as points become further away from the training data. This is particularly true for
the dropconnect and spike-and-slab methods.

3.2 Convolutional Neural Networks

We trained CNNs on the MNIST [16] and CIFAR-10 [14] datasets. For each dataset, a 10,000 image
subset of the training set was used for validation. For MNIST, each CNN had two convolutional
layers followed by a fully connected layer and a softmax layer. For CIFAR-10, each CNN had 13
convolutional layers followed by a fully connected layer and a softmax layer. (See Supplementary
Material for the detailed architectures.) For the dropout networks, dropout was used after each convo-
lutional and fully-connected layer, but before the non-linearity. For the dropconnect networks, all
weights were sampled. All ps were treated as network-wide hyperparameters. For L2-regularization,
L2-coefficients of 1e-5 (MNIST) and 4e-5 (CIFAR-10) were used for all weights. No data augmen-
tation was used for MNIST. Random horizontal flipping was used during CIFAR-10 training. We

Table 1: MNIST and CIFAR-10 mean and standard deviation of test errors for the trained convolutional
neural networks (CNNs) with and without Monte-Carlo (MC) across 5 runs, each MC run using 10
samples.

MNIST CIFAR-10
Method Mean Error (%) Error Std. Dev. Mean Error (%) Error Std. Dev.

MAP 0.76 - 25.86 -
Bernoulli DropConnect 0.56 - 16.46 -

MC Bernoulli DropConnect 0.56 0.03 16.59 0.11
Gaussian DropConnect 0.56 - 16.78 -

MC Gaussian DropConnect 0.58 0.02 16.65 0.11
Bernoulli Dropout 0.49 - 11.23 -

MC Bernoulli Dropout 0.48 0.03 9.95 0.08
Gaussian Dropout 0.42 - 9.07 -

MC Gaussian Dropout 0.36 0.04 9.00 0.10
Spike-and-Slab Dropout 0.48 – 10.64 –

MC Spike-and-Slab Dropout 0.46 0.01 10.05 0.06
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Figure 3: The MNIST (a) classification error for additive Gaussian noise using standard deviations
St.D of 0, 1, 2, 3, 5, and 5, (b) mean squared error (MSE) between the x = y line and the calibration
plot (i.e. the frequency of the true label vs predicted probability of that label) for varying Gaussian
image noise StD., and (c) The calibration MSE versus the classification error for predicitons across
all noise StD. for Bernoulli dropconnect (BDC), Gaussian dropconnect (GDC), Bernoulli dropout
(BDO), Gaussian dropout (GDO), and spike-and-slab dropout (SSD) with and without MC sampling
using 10 samples.
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Figure 4: The CIFAR-10 (a) classification error for additive Gaussian noise using standard deviations
St.D of 0, 0.25, 0.5, 0.75, and 1, (b) mean squared error (MSE) between the x = y line and the
calibration plot (i.e. the frequency of the true label vs predicted probability of that label) for varying
Gaussian image noise StD., and (c) The calibration MSE versus the classification error for predicitons
across all noise StD. for Bernoulli dropconnect (BDC), Gaussian dropconnect (GDC), Bernoulli
dropout (BDO), Gaussian dropout (GDO), and spike-and-slab dropout (SSD) with and without MC
sampling using 10 samples.

evaluated the trained CNNs using the original testing sets and using the testing images with added
random Gaussian noise of increasing variance in order to test each network’s uncertainty for the
regions of input space not seen in the training set.

While the dropout-based methods were the most accurate on the test-set (Table 1), as image noise
was added they became increasingly worse compared to the dropconnect-based networks (Figure 3.a
and 4.a). Sampling only consistently improved the accuracy for Bernoulli and spike-and-slab dropout.
However, sampling did consistently improve the calibration of the networks as the image noise was
increased (Figure 3.b and 4.b). For a given accuracy across each set of noisy test images, sampling
also generally lead to better calibration (Figure 3.c and 4.c). (See Supplementary Material for a table
of the calibration plots and training plots for the different CNNs.) Gaussian dropout led to the highest
test set accuracy, but it also led to reduced robustness to noise. While slightly less accurate on the test
set, Bernoulli dropout and spike-and-slab dropout were much more robust.

Seemingly contradictory results have been reported in the literature regarding CIFAR-10 and MC
Bernoulli dropout. Gal and Ghahramani [4] found that standard Bernoulli dropout methods led to
relatively inaccurate networks when dropout was used at every layer in a CNN, whereas MC sampling
increased the accuracy of these networks. However, Srivastava et al. [24] found that using dropout at
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Figure 5: The classification error for the CIFAR-10 test set using different p hyperparameter values.
For spike-and-slab dropout, pdo was varied, while pdc was fixed.

every layer led to increased generalization performance even without sampling at prediction time. In
our CIFAR-10 experiments, but not our MNIST experiments, we have found that using sampling
at prediction time makes networks more robust to high variance dropout. Using lower variance
dropout results in standard and MC methods having similar accuracies, while using higher variance
distributions results in MC inference outperforming standard methods (Figure 5). These results
indicate that Bernoulli or Gaussian dropout with MC sampling are less dependent on the exact value
of p and can allow higher levels of dropout regularization to be used.

4 Discussion

L2 regularization and Bernoulli dropout are widely used for regularization and routinely lead to
increased testing accuracy. However, the uncertainty learned do not generalize well. However,
performing approximate Bayesian inference via sampling during training and testing allowed CNNs
to better model their uncertainty. Dropconnect-based CNNs performed worse on the unmodified
test set, but were much more robust to deviations from the training distribution. On the other hand,
dropout-based networks, particularly MC Gaussian dropout, performed well on the unmodified
test set, but were not as robust. Using sampling and combining Bernoulli dropout and Gaussian
dropconnect to approximate the use of spike-and-slab variational distributions lead to a CNN that
performed better near the test set than the dropconnect methods and more robustly represented its
uncertainty compared to the dropout methods.
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1 Methods

1.1 L2 regularization and the KLD between Gaussians

The Kullback–Leibler divergence (KLD) betweenN (µq, σ
2
q ) andN (µp, σ

2
p) can be calculated using:

KL(q(wi,j)||p(wi,j)) =
(µq − µp)2

2σ2
p

+ log
σp
σq

+
σ2
q

2σ2
p

− 1

2
(1)

In the case whereN (µp, σ
2
p) is a pre-defined prior and σq is not a function of the learnable parameters

V :

argmin
V

KL(q(wi,j)||p(wi,j)) = argmin
V

(µq − µp)2

2σ2
p

(2)

For µp = 0, this is equivalent to L2 regularization where the L2-coefficent is equal to 1/σ2
p. However,

in the case where σq is a function of V , such as for Gaussian dropout/dropconnect, this equivalence
does not hold. In [5], Kingma et al. used a log-uniform prior instead of a Gaussian prior in order to
bypass this and make the KLD not a function of V . In our derivations, we minimize a lower bound of
Equation 1 constructed using the fact that the sum of the terms that include σq and the constant term
is greater than or equal to 0:

KL(q(wi,j)||p(wi,j)) ≥
(µq − µp)2

2σ2
p

(3)

1.2 Gaussian "reparameterization trick"

As discussed in [5], for a matrix W of Gaussian random variables can be sampled using the "repara-
materization trick":

wi,j ∼ N (µvi,j , αv
2
i,j) (4)

wi,j = f(vi,j , εi,j) = vi,j +
√
αvi,jεi,j (5)

where εi,j ∼ N (0, 1), α = p/(1− p), and p is the dropout or dropconnect drop probability. Given
a deterministic, differentiable, and monotonic mapping W = f(V, ε), qV (W )dW = p(ε)dε. As a

Second workshop on Bayesian Deep Learning (NIPS 2017), Long Beach, CA, USA.



result: ∫
qV (W )l(W )dW =

∫
p(ε)l(W )dε =

∫
p(ε)l(f(V, ε))dε (6)

1.3 MC Gaussian Dropout

For approximate inference, variational distribution qV (W ) is learned by maximizing the log-evidence
lower bound over parameters V [1; 2; 3; 4]:

log(p(Dtrain)) ≥
∫

log p(Dtrain|W )qV (W )dW −KL(qV (W )||p(W )) (7)

For either Gaussian dropout or dropconnect, each element of W is sampled from a Gaussian distribu-
tion, N (vi,j , σ

2
vi,j ), where σ2

vi,j = αµ2
vi,j . W can then be sampled using the Gaussian "reparameteri-

zation trick", which allows Equation 7 to be rewritten as:

log(p(Dtrain)) ≥
∫
ε

log p(Dtrain|W )q(ε)dε−KL(qV (W )||p(W )) (8)

where ε is a vector containing each εi,j .

This results in the following minimization objective function:

LV := −
∫
ε

log(p(Dtrain|W ))q(ε)dε+KL(qV (W )||p(W ) (9)

By using L2 regularization, we are optimizing a lower-bound of the KLD between qV (W ) and the
prior p(wi,j = N (0, λ−1) as previously shown:

L
V
≥ L̃

V
:= −

∫
ε

log(p(Dtrain|W ))q(ε)dε+
λ

2
vvᵀ (10)

where v is a vector containing each vi,j and ε is a vector containing each εi,j .

Approximating using Monte Carlo integration for learning (Eq. 11) and inference (Eq. 12):

L̃v :≈ − 1

n

∑
ε

log(p(Dtrain|W )) +
λ

2
vvᵀ (11)

p(Dtest) ≈
1

n

∑
ε

p(Dtest|W ) (12)

where εi,j ∼ N (0, 1) for Gaussian dropconnect and εi,∗ ∼ N (0, 1) for Gaussian dropout.

1.4 MC spike-and-slab Dropout

For MC spike-and-slab dropout, the weight matrix W = B ◦G where bi,∗ ∼ Bern(1 − pdo) and
gi,j ∼ N (vi,j , σ

2
vi,j ), similar to the method discussed in [6]. Instead of directly performing variational

inference for p(W |Dtrain), we find a variational distribution, qV (B,G) for p(B,G|Dtrain) using:

log(p(Dtrain)) ≥
∑
B

∫
G

log(p(Dtrain|B,G))qV (B,G)dG

−KL(qV (B,G)||p(B,G))
(13)

Assuming independence between the random variables B and G, q(B,G) = q(B)q(G), so:

log(p(Dtrain)) ≥
∑
B

∫
G

log(p(Dtrain|B,G))q(B)qV (G)dG

−KL(q(B)||p(B))−KL(qV (G)||p(G))
(14)
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For a spike-and-slab distribution, each element of G is independently sampled from a Gaussian
distribution, N (vi,j , σ

2
vi,j ), where σ2

vi,j = αµ2
vi,j . G can be sampled using the Gaussian "reparame-

terization trick". This allows Equation 14 to be rewritten as:

log(p(Dtrain)) ≥
∑
B

∫
ε

log(p(Dtrain|B,G)q(ε)q(B)dε

−KL(q(B)||p(B))−KL(qV (G)||p(G))
(15)

ε is a vector containing each εi,j .

This results in the following minimization objective function:

L
V
:= −

∑
B

∫
ε

log(p(Dtrain|B,G))q(ε)q(B)dε+KL(q(B)||p(B)) +KL(qV (G)||p(G) (16)

Using Bern(1− pdo) as a prior for each element of B leads to a constant KLD of zero for Bernoulli
dropout with a drop probability of pdo and using a prior of N (0, σ2

p) for each element of G leads to
L2-regularization being a lowerbound of the KLD between qV (G) and N (0, λ−1):

L
V
≥ L̃V := −

∑
B

∫
ε

log(p(Dtrain|B,G))q(ε)q(B)dε+
λ

2
vvᵀ (17)

where v is a vector containing each vi,j and ε is a vector containing each εi,j .

Approximating using Monte Carlo integration for learning (Eq. 18) and inference (Eq. 19):

L̃
V
:≈ − 1

n

∑
(B,ε)

log(p(Dtrain|B,G)) +
λ

2
vvᵀ (18)

p(Dtest) ≈
1

n

∑
(B,ε)

p(Dtest|B,G) (19)

where bi,∗ ∼ Bern(1− pdo) and εi,j ∼ N (0, 1).

2 Experiments

2.1 Architectures

Table 1: The convolutional neural network (CNN) architecture used for MNIST.
Layer Kernel Size # Features Stride Non-linearity
Conv-1 5x5 32 1 ReLU

MaxPool-1 2x2 32 2 Max
Conv-2 5x5 64 1 ReLU

MaxPool-2 2x2 64 2 Max
FC 1500 500 - ReLU
FC 500 10 - Softmax
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Table 2: The convolutional neural network (CNN) architecture used for CIFAR-10.

Layer Kernel Size # Features Stride Non-linearity
Conv-1 3x3 64 1 ReLU
Conv-2 3x3 64 1 ReLU

MaxPool-1 2x2 64 2 Max
Conv-3 3x3 128 1 ReLU
Conv-4 3x3 128 1 ReLU

MaxPool-2 2x2 128 2 Max
Conv-5 3x3 256 1 ReLU
Conv-6 3x3 256 1 ReLU
Conv-7 3x3 256 1 ReLU

MaxPool-3 2x2 256 2 Max
Conv-8 3x3 512 1 ReLU
Conv-9 3x3 512 1 ReLU
Conv-10 3x3 512 1 ReLU

MaxPool-4 2x2 512 2 Max
Conv-11 3x3 512 1 ReLU
Conv-12 3x3 512 1 ReLU
Conv-13 3x3 512 1 ReLU

MaxPool-5 2x2 512 2 Max
FC 512 512 - ReLU
FC 512 10 - Softmax

2.2 Additional results
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Figure 1: The x = y line (Ideal) and the calibration plot (i.e. the frequency of the true label vs
predicted probability of that label) for varying Gaussian image noise StD. for the a MNIST or (b)
CIFAR-10 trained Bernoulli dropconnect (BDC), Gaussian dropconnect (GDC), Bernoulli dropout
(BDO), Gaussian dropout (GDO), and spike-and-slab dropout (SSD) networks with and without MC
sampling using 10 samples.
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