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Abstract

The problem of detecting whether a test sample is from in-distribution (i.e., training
distribution by a classifier) or out-of-distribution sufficiently different from it arises
in many real-world machine learning applications. However, the state-of-art deep
neural networks are known to be highly overconfident in their predictions, i.e., do
not distinguish in- and out-of-distributions. Recently, to handle this issue, several
threshold-based detectors have been proposed given pre-trained neural classifiers.
However, the performance of prior works highly depends on how to train the
classifiers since they only focus on improving inference procedures. In this paper,
we develop a novel training method for classifiers so that such inference algorithms
can work better. In particular, we suggest two additional terms added to the original
loss (e.g., cross entropy). The first one forces samples from out-of-distribution
less confident by the classifier and the second one is for (implicitly) generating
most effective training samples for the first one. In essence, our method jointly
trains both classification and generative neural networks for out-of-distribution.
We demonstrate its effectiveness on various popular image datasets.

1 Introduction

Even though deep neural networks (DNNs) achieve high classification accuracy, it has been addressed
[9, 6] that they are typically overconfident in their predictions. Since evaluating the quality of their
predictive uncertainty is hard, deploying them in real-world systems raises serious concerns in AI
Safety [1]. This overconfidence issue is highly related to the problem of detecting out-of-distribution:
detect whether a test sample is from in-distribution (i.e., training distribution by DNNs) or out-of-
distribution sufficiently different from it. Formally, it can be formulated as a binary classification
problem. Let an input x ∈ X and a label y ∈ Y = {1, . . . ,K} be random variables that follow a
joint data distribution Pin (x, y) = Pin (y|x)Pin (x). We assume that a classifier Pθ (y|x) is trained
on a dataset drawn from Pin (x, y), where θ denotes the model parameter. We let Pout (x) denote an
out-of-distribution which is ‘far away’ from in-distribution. Our problem of interest is determining if
input x is from Pin or Pout, possibly utilizing a well calibrated classifier Pθ (y|x). In other words,
we aim to build a detector which assigns label 1 if data is from in-distribution, and label 0 otherwise.

There have been recent efforts toward developing efficient detection methods where they mostly
have studied simple threshold-based detectors utilizing a pre-trained classifier [7, 11]. For each
input x, it measures some confidence score q(x) based on a pre-trained classifier, and compares
the score to some threshold δ > 0. Then, the detector assigns label 1 if the confidence score q(x)
is above δ, and label 0, otherwise. Specifically, the authors in [7] defined the confidence score
as a maximum value of the predictive distribution, and the authors in [11] further improved the
performance by using temperature scaling [6] and adding small perturbations to the input data.
Although such inference methods are computationally simple, their performances highly depend on
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the pre-trained classifier. Namely, they fail to work if the classifier does not separate the maximum
value of predictive distribution well enough with respect to Pin and Pout. Ideally, a classifier should
be trained to separate all class-dependent in-distributions as well as out-of-distribution in the output
space. As another line of research, Bayesian probabilistic models [10, 12] and ensembles [9] were
also investigated. However, training or inferring those models are computationally more expensive.
This motivates our approach of developing a new training method for the more plausible simple
classifiers. Our direction is orthogonal to the Bayesian and ensemble approaches, where one can also
combine them for even better performance.

Contribution. In this paper, we develop such a training method for detecting out-of-distribution Pout
better without losing its original classification accuracy. First, we consider a new loss function, called
confidence loss. Our key idea on the proposed loss is to additionally minimize the Kullback-Leibler
(KL) divergence from the predictive distribution on out-of-distribution samples to the uniform one in
order to give less confident predictions on them. Then, in- and out-of-distributions are expected to
be more separable. However, optimizing the confidence loss requires training samples from out-of-
distribution, which are often hard to sample: a priori knowledge on out-of-distribution is not available
or its underlying space is too huge to cover. To handle the issue, we consider a new generative
adversarial network (GAN) [5] for generating most effective samples from Pout. Unlike the original
GAN, the proposed GAN generates ‘boundary’ samples in the low-density area of Pin. Finally, we
design a joint training scheme minimizing the classifier’s loss and new GAN loss alternatively, i.e.,
the confident classifier improves the GAN, and vice versa, as training proceeds. Here, we emphasize
that the proposed GAN does not need to generate explicit samples under our scheme, and instead
it implicitly encourages training a more confident classifier. We demonstrate the effectiveness of
the proposed method using deep convolutional neural networks including VGGNet [15] for image
classification tasks on CIFAR [8], SVHN [13], ImageNet [4], and LSUN [16] datasets.

2 Training confident neural classifiers

Confident classifier for out-of-distribution. We propose a new loss function to train a classifier
which can map the samples from in- and out-of-distributions into the output space separately. Without
loss of generality, suppose that the cross entropy loss is used for training. Then, we define the
following, termed confidence loss:

min
θ

EPin(x̂,ŷ)

[
− logPθ (y = ŷ|x̂)

]
+ βEPout(x)

[
KL (U (y) ‖ Pθ (y|x))

]
, (1)

where KL denotes the Kullback-Leibler (KL) divergence, U (y) is the uniform distribution, and
β > 0 is a penalty parameter. It is highly intuitive as the new loss forces the predictive distribution
on out-of-distribution samples to be closer to the uniform one, i.e., zero confidence, while that for
samples from in-distribution still follows the label-dependent probability.

Joint training method of confident classifier and adversarial generator. However, optimizing
the confidence loss requires training samples from out-of-distribution, which are often hard to sample.
To handle this issue, we propose a joint training scheme for the confident classifier and the proposed
GAN which generates ‘boundary’ samples in the low-density area of in-distribution, i.e., close to
out-of-distribution. We suggest the following joint objective function:

min
G

max
D

min
θ

EPin(x̂,ŷ)

[
− logPθ (y = ŷ|x̂)

]︸ ︷︷ ︸
(a)

+βEPpri(z)

[
KL (U (y) ‖ Pθ (y|G (z)))

]︸ ︷︷ ︸
(b)

+EPin(x̂)

[
logD (x̂)

]
+ EPpri(z)

[
log (1−D (G (z)))

]
−H (PG (x)),︸ ︷︷ ︸

(c)

(2)

where H (·) denotes the entropy, D is discriminator that represents a probability that sample x is
from the in-distribution and G is the generator that maps a latent variable z from a prior distribution
Ppri (z) to generated outputs G (z). The classifier’s confidence loss corresponds to (a) + (b), and the
proposed GAN loss corresponds to (b) + (c). By minimizing the KL divergence term (b) and original
GAN loss (c) where H is added to discourage the generator from collapsing, the proposed GAN
loss encourage the generator to produce the samples which are on the low-density boundary of the
in-distribution space. To optimize the above objective efficiently, we propose an alternating algorithm,
which optimizes model parameters {θ} of classifier and GAN models {G,D} alternatively.
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Figure 1: Performances of the baseline detector under various training losses.

3 Experimental Results

We demonstrate the effectiveness of our method using various datasets: CIFAR [8], SVHN [13],
ImageNet [4], and LSUN [16]. We train VGGNet [15] for classifying CIFAR-10 and SVHN datasets.
The corresponding test dataset is used as the in-distribution (positive) samples to measure the
performance. We use realistic images as the out-of-distribution (negative) samples. For evaluation,
we use baseline threshold-based detectors [7] that computes the maximum value of predictive
distribution on a test sample and classifies it as positive (i.e., in-distribution) if the confidence score is
above some threshold. Using this baseline detector, we measure the true negative rate (TNR) at 95%
true positive rate (TPR), the area under the receiver operating characteristic curve (AUROC) and the
detection accuracy, where larger values of all metrics indicate better detection performances. Due to
the space limitation, more explanations and results are given in the final paper.

We evaluate the performance of joint confidence loss (2) utilizing the proposed GAN. To this end, we
use VGGNets (as classifiers) and DCGANs [14] (as GANs). We also test a variant of confidence loss
which optimizes the KL divergence term on samples from a pre-trained original GAN (implicitly)
modeling the in-distribution. One can expect that samples from the original GAN can be also useful
for improving the detection performance since it may have bad generalization properties [2] and
generate a few samples on the low-density boundary as like the proposed GAN. Figure 1 shows
the performance of the baseline detector for each in- and out-of-distribution pair. First, observe
that the joint confidence loss (blue bar) outperforms the confidence loss (1) with some explicit
out-of-distribution datasets (green bar). This is quite remarkable since the former is trained only
using in-distribution datasets, while the latter utilizes additional out-of-distribution datasets. We also
remark that our methods significantly outperform the baseline cross entropy loss (red bar) in all cases
without harming its original classification performances. Interestingly, the confidence loss with the
original GAN (orange bar) is often (but not always) useful for improving the detection performance,
whereas that with the proposed GAN (blue bar) still outperforms it in all cases.

4 Conclusion

In this paper, we aim to develop a training method for neural classification networks for detecting
out-of-distribution better without losing its original classification accuracy. In essence, our method
jointly trains two models for detecting and generating out-of-distribution by minimizing their losses
alternatively. Although we primarily focus on image classification in our experiments, our method can
be used for any classification tasks using deep neural networks. It is also interesting future directions
applying our methods for other related tasks: network calibration [6], Bayesian probabilistic models
[10, 12] and ensemble method [9] and semi-supervised learning [3].
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