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Abstract

Gaussian multiplicative noise is commonly used as a stochastic regularisation
technique in training of deterministic neural networks [12]. A recent paper [7]
reinterpreted the technique as a specific algorithm for approximate inference in
Bayesian neural networks; several extensions ensued [9, 10, 11]. We show that
the log-uniform prior used in all the above publications does not generally induce
a proper posterior, and thus Bayesian inference in such models is ill-posed. In-
dependent of the log-uniform prior, the correlated weight noise approximation
proffered in [7] has further issues leading to either infinite objective or high risk
of overfitting. The above implies that the reported sparsity of obtained solutions
cannot be explained by Bayesian or the related minimum description length argu-
ments. We thus study the objective from a non-Bayesian perspective, provide its
previously unknown analytical form which allows exact gradient evaluation, and
show that the reparametrisation proposed in [10] introduces minima not present in
the original [7]. Implications and future research directions are discussed.

1 Introduction

Variational inference (VI) approximates Bayesian posterior distribution over a set of latent vari-
ables W by optimising the evidence lower bound (ELBO) L(q) = Eq(W )[log p(Y |X,W )] −
KL (q(W )‖ p(W )) with respect to an approximate posterior q(W ). Variational dropout [7] at-
tempts to approximate a Bayesian neural network (BNN) by a posterior factorised over individual
weights w ∈W , q(w) = N (θ, αθ2). This corresponds to multiplying the individual mean paramet-
ers θ ∈ θ by ε ∼ N (1, α) as in the Gaussian multiplicative dropout [12]. The prior factorises in
the same way and is chosen so that KL (q(W )‖p(W )) is independent of the mean parameters θ.

In Section 2, we show that the chosen improper log-uniform prior [7] generally does not induce
a proper posterior, and thus the reported sparsification [10] cannot be explained by the standard
Bayesian and the related minimum description length (MDL) arguments. In this sense, Variational
Dropout falls into the same category of non-Bayesian sparsification approaches as, for example,
Lasso [13], because the uncertainty estimates based on q(W ) do not have the usual interpretation,
and the model may exhibit overfitting. The danger of overfitting might also be high when using
the correlated weight noise parametrisation [7] as discussed in Section 3. Consequently, we study
the objective in Section 4, derive its previously unknown analytical form which allows us to obtain
exact gradients in a computationally efficient way, and prove that it favours posterior approximations
N (θ, αθ2) with high variance relative to the value of mean θ (i.e. with α� 0). We further show that
the parametrisation of the approximate posterior proposed in [10] is not equivalent to the original
one [7], and discuss the implications which can partially explain the reported sparsification.
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2 Improper prior and posterior

The log-uniform prior proposed in [7] factorises over w ∈ W with p(w) := C/|w|, which is
equivalent to putting a uniform prior on log|w|. This is an improper prior which means that there is
no C ∈ R for which p(w) is a valid probability density. Nevertheless, improper priors can sometime
lead to proper posteriors (e.g. normal Jeffreys prior for Gaussian likelihood with unknown mean and
variance parameters) if C is treated as a positive finite constant.

For any proper posterior distribution, the normaliser Z =
∫
RD d(W )p(Y |X,W )p(W ) has to be

finite (D denotes the total number of weights). We will now show that this requirement is generally
not satisfied for the log-uniform prior combined with commonly used likelihood functions.
Proposition 1. Assume the log-uniform prior is used and that there exists some w ∈W such that
the likelihood function at w = 0 is continuous in w and non-zero. Then the posterior is improper.

All proofs can be found in the appendix. Notice that standard architectures with activations like
rectified linear or sigmoid, and Gaussian or Categorical likelihood satisfy the above assumptions, and
thus the posterior distribution for non-degenerate datasets will generally be improper.

Furthermore, the pathologies are not limited to the region near w = 0, but can also arise in the tails.
As an example, we will consider a single variable Bayesian logistic regression problem p(y |x,w) =
1/(1 + exp(−xw)), and again use the log-uniform prior for w. For simplicity, assume that we have
seen a single observation (x = 1, y = 1) and wish to infer the posterior distribution. To show that
the right tail has infinite mass, we integrate over intervals of the form [k,∞), k > 0,

∫
[k,∞)

d(w)p(w)p(y |x,w) =
∫
[k,∞)

d(w)
C

|w|
1

1 + exp(−w)
>

∫
[k,∞)

d(w)
C

|w|
1

1 + exp(−k)

=
C

1 + exp(−k)
log|w|

∣∣∣∣∞
k

=
C

1 + exp(−k)
· (∞− log k) =∞ .

Equivalently, we could have obtained infinite mass in the left tail – for example by taking the ob-
servation to be (x = −1, y = 1). Because the sigmoid function is continuous and equal to 1/2 at
w = 0, the posterior also has infinite mass around the origin, exemplifying both of the discussed
degeneracies. The normalising constant is obviously infinite and thus the posterior is again improper.

In general, improper posteriors lead to undefined or incoherent inferences. The above shows that
this is the case for the log-uniform prior combined with BNN and related models, making Bayesian
inference, exact or approximate, in such models ill-posed.

3 Support mismatch in correlated Variational dropout

Standard Bernoulli dropout multiplies each input to a layer by a binary random variable which is
equivalent to multiplying the corresponding row of the subsequent weight matrix by the same variable.
To emulate this behaviour, Section 3.2 in [7] proposes to use a shared Gaussian random variable for
whole rows of the posterior weight matrices, wi = siθi, si ∼ N (1, α). This leads to a degenerate
posterior which only assigns mass along the directions defined by θ.

There are two possible consequences. If the log-uniform prior is used, then the directions defined
by θ span a measure zero subspace of RD and thus the KL (q(W )‖ p(W )) and consequently
KL (q(W )‖ p(W |X,Y )) are equal to infinity for any configuration of θ (see, for example, [2,
Section 2.1]). This means that there is no Bayesian interpretation for the obtained q(W ). If the prior
is instead only defined over the si scalars, θ become model parameters and thus not regularised.
Optimising the ELBO will lead to a valid Bayesian posterior approximation for the si variables;
however, the large number of unregularised parameters θ can potentially lead to significant overfitting.
Both interpretations of the correlated weight noise approximation are thus problematic.

4 Variational dropout as pseudo KL divergence minimisation

We have established that optimisation of the ELBO implied by a BNN with log-uniform prior over its
weights cannot generally be interpreted as a form of approximate Bayesian inference. Nevertheless,
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the reported empirical results suggest that the objective might possess reasonable properties resulting
in sparse solutions. We present some preliminary observations and related literature below, leaving
more thorough exploration of the topic to future research. In the following paragraphs, we prepend all
terms related to VI terminology by pseudo to emphasize that the standard properties need not hold.

Firstly, despite the contradictory claims in [7, 9, 10], there exists an analytical expression for
the pseudo KL (q(w)‖p(w)), and for its derivative with respect to the pseudo variational parameters.
Remark 1. Consider q(w) = N (µ, σ2), and p(w) = C/|w|, and denote u := µ2/(2σ2) ≥ 0. Then,

KL (q(w)‖p(w)) = −1

2
log(2πe)− log C +

1

2

(
log 2 + e−u

∞∑
k=0

uk

k!
ψ(1/2 + k)

)
(1)

= −1

2
log(πe)− log C− 1

2

(
∂

∂a
M(a; 1/2;−u)

∣∣∣∣
a=0

+ γ + 2 log 2

)
, (2)

where ψ(x) denotes the digamma function, and M(a; b; z) the Kummer’s function of the first kind.

We can obtain gradients with respect to µ and σ2 using,

∇uKL (q(w)‖ p(w)) =

{
1 u = 0
D+(
√
u)√

u
u > 0

, (3)

and the chain rule; D+(x) is the Dawson integral. The derivative is continuous in u on [0,∞).

Equation (3) is sufficient for first order gradient-based pseudo ELBO optimisation, and thus can be
used to replace the approximations used in [7, 10]. We note that numerically accurate implementations
of the Dawson integral exist in many popular programming languages (see, for example, [6]).

In variational inference literature, the term KL (q(w)‖ p(w)) is sometimes interpreted as a regulariser,
constraining q(w) from concentrating at the maximum likelihood estimate which would be optimal
with respect to the other term Eq(W )[log p(Y |X,W )] in the ELBO. It is thus natural to ask
what effect this term has on the pseudo variational parameters. Noticing that only the infinite sum
in Equation (1) depends on these parameters, and that the first summand is always equal to ψ(1/2),
we can focus on summands corresponding to k ≥ 1. Because ψ(1/2+k) > 0,∀k ≥ 1, all summands
are non-negative. Hence the penalty will be minimised if µ2/(2σ2) = 0, i.e. when µ = 0 and/or
σ2 →∞; Remark 2 is sufficient to establish that this minimum is unique.
Remark 2. Under Remark 1 assumptions, KL (q(w)‖p(w)) is strictly increasing for u ∈ [0,∞).

In the multiplicative parametrisation [7], u = µ2/(2σ2) = θ2/(αθ2) = 1/α and thus the optimum
can only be approached as α→∞. Hence the additive parametrisation proposed in [10] is not equival-
ent to the multiplicative, which combined with the improved approximation of the KL (q(w)‖ p(w))
term might explain why the original paper [7] did not report the same sparsification as [10].

Section 2 suggests the pathological behaviour is non-trivial to remove when log-uniform prior
is used. Some proper prior distributions might, however, lead to comparable sparsification [9].
Alternatively, Remarks 1 and 2 imply that pseudo ELBO optimisation leads to penalised maximum
likelihood estimation of the pseudo variational parameters. Noting that standard differential entropy
can be interpreted as quantifying pseudo KL from the D-dimensional Lebesgue measure, it might be
interesting to ask what can be gained by replacing it by the log-uniform or other non-finite measure.
A starting point might be some of the previous applications of entropy for regularisation [8, 16, 17].

5 Conclusion

Bayesian and the related MDL interpretations of the Variational Gaussian Dropout are technically
flawed, and thus cannot be used to explain the reported results. We studied the pseudo VI objective,
derived its analytical form, and provided a simple way to optimise it without resorting to any further
approximations. We remarked that replacing the multiplicative by additive posterior parametrisation
does affect characteristics of the objective, showing that the change may partially explain why [7] did
not report the same sparsification as [10], and outlined some interesting future research directions.
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A Proofs

The following notation and identities are used throughout this section: ψ(x) is the digamma function,
ψ(x + 1) = ψ(x) + 1/x, ψ(k + 1) = Hk − γ where Hk is the kth harmonic number and γ is
the Euler–Mascheroni’s constant, Ei(x) = −

∫∞
−x d(t)e

−t/t is the exponential integral function,∑∞
k=1 u

kHk/k! = eu(γ + log|u| − Ei(−u)) [1, 3], and
∑∞
k=1 u

k/(k!k) = Ei(u)− γ − log|u| [5];
the last two identities hold for u > 0. Importantly, we define 00 := 1 unless stated otherwise.

Proof of Proposition 1. Denote the likelihood value by ε > 0. Take an arbitrary number r such that
ε > r > 0. By continuity, we can find δ > 0 such that |w − 0| < δ implies that the likelihood value
is greater than r; let A 3 0 denote the open ball of radius δ centred at 0. Because both the prior and
the likelihood only take non-negative values, we have,
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Z =

∫
RD−1

d(W \ w)p(W \ w)

[∫
R
d(w)p(w)p(Y |X,W )

]

>

∫
RD−1

d(W \ w)p(W \ w)

[∫
A

d(w)
C

|w|
r = Cr · ∞

]
=∞ .

Z =∞ means that the measure of RD under p(W |X,Y ) is equal to infinity, and thus it cannot be
renormalised into a proper probability density.

Proof of Remark 1. Using standard identities about Gaussian random variables, and the fact that
v := ε2, ε ∼ N (µ/σ, 1), follows the non-central chi-squared distribution χ2(λ, ν) with ν = 1
degrees of freedom and non-centrality parameter λ = (µ/σ)2, we have,

E
q(w)

[log q(w)]− E
q(w)

[log p(w)] = E
q(w)

[log q(w)]− log C +
1

2
E

q(w)
[log|w|2]

= −1

2
log(2πeσ2)− log C +

1

2
E

ε∼N (µ/σ,1)
[log σ2ε2]

= −1

2
log(2πeσ2)− log C +

1

2

(
log σ2 + E

v∼χ2(µ2/σ2,1)
[log v]

)

= −1

2
log(2πeσ2)− log C +

1

2

(
log σ2 +

∞∑
k=0

e
− µ2

2σ2
(
µ2

2σ2 )
k

k!
E

v∼χ2(0,1+2k)
[log v]

)

= −1

2
log(2πe)− log C +

1

2

(
log 2 + e

− µ2

2σ2

∞∑
k=0

(
µ2

2σ2 )
k

k!
ψ(1/2 + k)

)
= −1

2
log(πe)− log C− 1

2

(
∂

∂a
M(a; 1/2;−µ2/(2σ2))

∣∣∣∣
a=0

+ γ + 2 log 2

)
,

where M(a; b; z) denotes the Kummer’s function of the first kind. We used the fact that the density
function of χ2(λ, ν) can be written in terms of a Poisson mixture of centralised chi-squared distribu-
tions, and the identity Ev∼χ2(0,ν)[log v] = ψ(ν/2)− log(1/2). It is easy to check that Equation (1)
holds for all u ≥ 0 as long as we define 00 = 1, and keep 0k = 0,∀k > 0. The last equality was
obtained using Wolfram Alpha [14]; to validate this result, we performed an extensive numerical test,
and will now show that the series indeed converges for u = µ2/(2σ2) ∈ [0,∞), i.e. for all plausible
values of u. The comparison test gives us convergence for u ∈ (0,∞):

∞∑
k=0

uk

k!
ψ(1/2 + k) < ψ(1/2) +

∞∑
k=1

uk

k!
ψ(1 + k) = ψ(1/2) +

∞∑
k=1

uk

k!
(Hk − γ)

= ψ(1/2) + eu(γ + log|u| − Ei(−u))− γ(eu − 1) = ψ(1/2)− γ + eu(log|u| − Ei(−u)) ,

where we use the fact that the individual summands are non-negative for k ≥ 1 (which is also means
we need not take the absolute value explicitly). It is trivial to check that the series converges at u = 0,
and thus we have convergence for all u ∈ [0,∞).

To obtain the derivative with respect to u, we use the infinite series formulation from Equation (1),
and the fact that the derivative of a power series within its radius of convergence is equal to the sum of
its term-by-term derivatives (see [4] for a nice proof which avoids complex analysis). Using the fact
that only the infinite series in Equation (1) depends on u, we obtain,
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∇ue−u
∞∑
k=0

uk

k!
ψ(1/2 + k) = ∇u

(
e−uψ(1/2) + e−u

∞∑
k=1

uk

k!
ψ(1/2 + k)

)

= −e−uψ(1/2) + e−u
∞∑
k=1

(
uk−1

(k − 1)!
ψ(1/2 + k)

)
− e−u

∞∑
k=1

(
uk

k!
ψ(1/2 + k)

)

= e−u(ψ(3/2)− ψ(1/2)) + e−u
∞∑
k=1

(
uk

k!
ψ(3/2 + k)

)
− e−u

∞∑
k=1

(
uk

k!
ψ(1/2 + k)

)

= 2e−u + e−u
∞∑
k=1

uk

k!

1

1/2 + k
= e−u

∞∑
k=0

uk

k!

1

1/2 + k
=

2D+(
√
u)√

u
,

for u > 0 and is equal to 2 if u = 0; in our case, the condition u ≥ 0 is satisfied by definition; to
obtain the expression in Equation (3), notice that the above series is multiplied by 1/2 in Equation (1).
Equality of the last infinite series to 2D+(

√
u)/
√
u, was again obtained using Wolfram Alpha [15];

the result was numerically validated, and convergence on u ∈ (0,∞) can again be established using
the comparison test:

∞∑
k=0

∣∣∣∣∣ukk! 1

1/2 + k

∣∣∣∣∣ =
∞∑
k=0

uk

k!

1

1/2 + k
< 2 +

∞∑
k=1

uk

k!

1

k
= 2 + Ei(u)− γ − log|u| .

The convergence at u = 0 can be checked trivially, yielding convergence for all u ∈ [0,∞).

D+(u) and
√
u are continuous on (0,∞), and

√
u > 0; hence D+(u)/

√
u is continuous on (0,∞),

and we observe limu→0+ D+(
√
u)/
√
u = 1, i.e. the gradient is continuous in u on [0,∞).

Proof of Remark 2. We use the conclusion of Remark 1 which established that the pseudo KL is dif-
ferentiable for u ∈ [0,∞) (and thus continuous on the same interval). To show that KL (q(w)‖ p(w))
is strictly increasing for u ∈ [0,∞), it is sufficient to observe,

∇uKL (q(w)‖p(w)) = 1

2
e−u

∞∑
k=0

uk

k!

1

1/2 + k
> 0 ,

because each summand is strictly positive for u ∈ [0,∞) (given 00 = 1). By a simple application of
the mean value theorem, we conclude KL (q(w)‖ p(w)) is strictly increasing in u on [0,∞).
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