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1 Introduction

It is a common belief that human students require far fewer training examples than any learning
machine [7]. No doubt this has to do with the fact that effective teachers provide much more than
the correct answer to their pupils; they provide an explanation in addition to the result.
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Figure 1: In LUPI paradigm, a teacher pro-
vides additional information during training. In
this work, we propose to utilize this information
in order to control the variance of the Dropout.
Our empirical and theoretical analysis suggests
that Heteroscedastic Dropout singificantly incre-
ses sample efficiency of both CNNs and RNNs
resulting in higher accuracy with much less data.

In a typical machine learning setup, we present
tuples {(xi, yi)}ni=1 to a machine learning
model. One way to introduce an “explana-
tion” to a supervised learning system would be
to provide some sort of privileged information,
which we entitle x?. In practice, one can incor-
porate the triplets {(xi, x?i , yi)}ni=1 into a learn-
ing system at training time and the testing stage
continues to make use of only x, without any
access to x?. In other words, the “Student” has
access to privileged information while interact-
ing with the “Teacher” during training, but in
the test stage the “Student” operates without the
supervision of the “Teacher”. This paradigm
is called Learning Under Privileged Informa-
tion (LUPI) and was introduced by Vapnik and
Vashist [7]. Vapnik and Vashist [7] provide a
LUPI algorithm which is only valid for SVM
based methods. Indeed, many have shown that
the privileged information can be introduced
into the loss function under a multi-task or a
distillation loss in an algorithm-agnostic way.
However, we raise the question, could it and should it be fed in as an input instead of an additional
task? If so, how would we go about doing so in an algorithm-agnostic way?

We define a new class of LUPI algorithms by making a structural specification. We consider a hy-
pothesis class such that each hypothesis is a combination of two functions – namely, a deterministic
function taking x as an input and a stochastic function taking x? as an input. When x? is not available
in the test stage, the “Student” simply makes a Bayes optimal decision and marginalizes the model
over x?. Our structural specification makes this marginalization straightforward while not compro-
mising the expressiveness of the model. This structure is natural in the context of Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) thanks to the dropout. Dropout
is a widely adopted tool to regularize neural networks by multiplying the activations of a neural net-
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work at some layer with a random vector. We simply extend the dropout to heteroscedastic dropout
by making its variance a function of the privileged information. In other words, dropout becomes the
stochastic function taking x? as an input and marginalizing the function corresponds to not utilizing
dropout in the test phase. In order to be able to train the heteroscedastic dropout, we use Gaussian
dropout instead of Bernoulli because the key technical tool we use is the re-parameterization trick
[3] which is only available for some specific distributions, including the Gaussian.

2 Method

Consider a machine learning problem defined over a compact space X and a label space Y . We
also consider a loss function l(·, ·) which compares a prediction with a ground truth label. In learn-
ing under privileged information, we also have additional information for each data point defined
over a space X ?, which is only available during the training. In other words, we have access to
i.i.d. samples from the data distribution as xi, x?i , yi ∼ p(x, x?, y) during training. However,
in test we will only be given x ∼ p(x). Formally, given a function class h(·;w) parameter-
ized by w and data {xi, x?i , yi}i∈[n], a typical aim is to solve the following optimization problem;
minw Ex,y∼p(x,y)[l(y, h(x;w))]

We propose to do so by learning a multi-view model using both x and x? and to use the marginalized
model in test when x? is not available. Consider a parametric function class for the multi-view data
h+ : X × X ? → Y . The training problem becomes: minw Ex,x?,y∼p(x,x?,y)[l(y, h

+(x, x?;w))]

This is equivalent to a classical supervised learning problem defined over a space X × X ? and any
existing method like CNNs can be used. In order to solve the inference problem, we consider the
following marginalization: h(x;w) ≡ Ex?∼p(x?|x)[h

+(x, x?;w)]

The major problem in this formulation is the intractability of this expectation, as p(x?|x) is un-
known. We propose to restrict the class of functions in a way that the expectation is straightforward
to compute. The form we propose is a parametric family such that the privileged information con-
trols the variance, whereas the main information (i.e. information available in both training and test)
controls the mean. The specific form we use is:

h+(x, x?;w) = ho(x;wo)�N (1, h?(x?;w?)) (1)
where � represents the Hadamard product and the stochastic function N (1, h?(x?;w?)) is a nor-
mal random variable with a constant mean function and a covariance function parametrized by
x? and w?. We also decompose w as two disjoint vectors as w = [wo,w?]. Moreover, in
this formulation, the expectation defined in (3) becomes straightforward and can be shown to be
h(x;w) = ho(x;wo). We visualize this structural specification in Figure 2.

Figure 2: The structure we propose. Privileged in-
formation is only used for estimation of the vari-
ance of the heteroscedastic dropout.

We use neural networks to represent ho and h?
and learn their parameters using the informa-
tion bottleneck. Since the output space is dis-
crete (we address classification), we denote the
representation of the data as h(x;w) and com-
pute the output as softmax(h(x;w)). We ex-
plain the details of training in the following sec-
tions.

2.1 Information Bottleneck for Learning

Our framework is closely related to represen-
tation learning since the main formulation is
learning a stochastic representation as a function of x and x?. The information bottleneck has
already been used for LUPI by controlling the role of x and x? separately [5]; however, we do not
need this explicit specification because our structural specification directly controls the role of x?.
We use information bottleneck for a rather different reason, its original reason, learning a minimal
and sufficient joint representation of x, x? which capture all the information about y. This is similar
to [1], and we use the same log-Normal assumption. The Lagrangian of the information bottleneck
can be written as (see [6] for details); L = H(y|z)+βI(x, x?; z) where z is the joint representation
of x, x? computed as z = h+(x, x?;w). These terms can be computed following a log-Normal prior
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assumption and the final optimization problem becomes;

min
w

1

n

n∑
i=1

Ez∼pw(z|x,x?)[log p(yi|z)] + β‖ log h?(x?i ;w?)‖ (2)

Table 1: Classification Test Accuracy on
1000 ILSVRC Classes. Because the ILSVRC
server prohibits large numbers of test submis-
sions, which we required to evaluate at different
sizes of sample data, we use the 50K validation
set images as our test set. Where we report “No-
x?,” we describe the results of a classical CNN
learning method. All 25K models diverged.

Number of Training Images
Model 25K 75K 200K 600K

Single Crop top-1
No-x? - 31.23 48.84 63.35
Our LUPI - 42.26 55.51 62.10

Single Crop top-5
No-x? - 56.33 74.11 85.14
Our LUPI - 67.42 78.89 84.36

Multi-Crop top-1
No-x? - 33.15 51.33 65.80
Our LUPI - 45.06 58.41 64.64

Multi-Crop top-5
No-x? - 58.66 76.16 86.69
Our LUPI - 69.50 81.15 85.77

Table 2: We compare our method for multi-modal
machine translation with baselines. We report
BLEU and METEOR metrics. Some baselines
only report English(en)→German(de) results, and
exclude de→en.

en→de de→en
Model BLEU Meteor BLEU Meteor

No x? (following [4]) 35.5 54.0 40.19 55.8
Imagination [2] 36.8 55.8 40.5 56.0
Ours 38.4 56.9 42.4 57.1

This minimization is simply the cross-entropy
loss with regularization over the logarithm of
the computed variances of the heteroscedas-
tic dropout, and can be performed via the re-
parametrization trick in practice when ho and
h? are defined as neural networks.

3 Experimental Results

In order to evaluate our method, we per-
form various experiments using both CNNs and
LSTMs. We test our method with CNNs for the
task of image classification and with LSTMs
for the task of machine translation.

We compare our method with the No-x? base-
line for image classification using the ImageNet
dataset. We perform experiments by varying
the number of training examples logarithmi-
cally. This is key since the main motivation
behind our LUPI method is learning with less
data rather than having higher accuracy. We re-
port the results in Table 1.

Multi-modal Machine Translation Our
method results in a significant accuracy
improvement measure by both BLEU and
METEOR scores in multi-modal machine
translation setting.

In summary, our results overperform all base-
lines for both multi-modal machine transla-
tion and image classification experiments using
both CNNs and RNNs. These results suggest
that our method is effective and generic.
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[2] D. Elliott and Á. Kádár. Imagination improves multimodal translation. CoRR, abs/1705.04350, 2017. 3

[3] D. Kingma and M. Welling. Auto-encoding variational bayes. In The International Conference on Learning
Representations, 2014. 2

[4] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. Opennmt: Open-source toolkit for neural machine
translation. In Proc. ACL, 2017. 3

[5] S. Motiian, M. Piccirilli, D. A. Adjeroh, and G. Doretto. Information bottleneck learning using privileged
information for visual recognition. In Conference on Computer Vision and Pattern Recognition, pages
1496–1505, 2016. 2

[6] N. Tishby and N. Zaslavsky. Deep learning and the information bottleneck principle. In IEEE Information
Theory Workshop (ITW), pages 1–5, April 2015. 2

[7] V. Vapnik and A. Vashist. A new learning paradigm: Learning using privileged information. Neural
Networks, 22(56):544 – 557, 2009. 1

3


