
Iterative Inference Models

Joseph Marino, Yisong Yue
California Institute of Technology
{jmarino, yyue}@caltech.edu

Stephan Mandt
Disney Research

stephan.mandt@disneyresearch.com

Abstract

Inference models, which replace an optimization-based inference procedure with
a learned model, have been fundamental in advancing Bayesian deep learning,
the most notable example being variational auto-encoders (VAEs). We propose
iterative inference models, which learn how to optimize a variational lower bound
through repeatedly encoding gradients. Our approach generalizes VAEs under
certain conditions, and viewing VAEs in the context of iterative inference provides
further insight into several recent empirical findings. We demonstrate the infer-
ence optimization capabilities of iterative inference models and show that they
outperform standard inference models on typical benchmark data sets.

1 Introduction

Generative models present the possibility of learning structure from data in unsupervised or semi-
supervised settings, thereby facilitating more flexible systems to learn and perform tasks in computer
vision, robotics, and other application domains with limited human involvement. Latent variable
models, a class of generative models, are particularly well-suited to learning hidden structure. They
frame the process of data generation as a mapping from a set of latent variables underlying the
data. When this mapping is parameterized by a deep neural network, the model can learn complex,
non-linear relationships, such as object identities [1] and dynamics [2, 3]. However, performing
exact posterior inference in these models is computationally intractable, necessitating the use of
approximate inference methods.

Variational inference [4, 5] is a scalable approximate inference method, transforming inference
into a non-convex optimization problem. Using a set of approximate posterior distributions, e.g.
Gaussians, variational inference attempts to find the distribution that most closely matches the
true posterior. This matching is accomplished by maximizing a lower bound on the marginal log-
likelihood, or model evidence, which can also be used to learn the model parameters. The ensuing
expectation-maximization procedure alternates between optimizing the approximate posteriors and
model parameters [6, 7]. Amortized inference [8] avoids exactly computing optimized approximate
posterior distributions for each data example, instead learning a separate inference model to perform
this task. Taking the data example as input, this model outputs an estimate of the corresponding
approximate posterior. When the generative and inference models are parameterized with neural
networks, the resulting set-up is referred to as a variational auto-encoder (VAE) [9, 10].

We introduce a new class of inference models, referred to as iterative inference models, inspired
by recent work in learning to learn [11]. Rather than directly mapping the data to the approximate
posterior, these models learn how to iteratively estimate the approximate posterior by repeatedly
encoding the corresponding gradients, i.e. learning to infer. With inference computation distributed
over multiple iterations, we conjecture that this model set-up should provide improved inference
estimates over standard inference models given sufficient model capacity. Our work is presented
as follows: Section 2 contains background on latent variable models, variational inference, and
inference models; Section 3 motivates and introduces iterative inference models; Section 4 presents
this approach for latent Gaussian models, showing that a particular form of iterative inference models

Second workshop on Bayesian Deep Learning (NIPS 2017), Long Beach, CA, USA.

reduces to standard inference models under mild assumptions; Section 5 contains empirical results;
and Section 6 concludes our work.

2 Background

2.1 Latent Variable Models & Variational Inference

Latent variable models are generative probabilistic models that use local (per data example) la-
tent variables, z, to model observations, x, using global (across data examples) parameters, θ. A
model is defined by the joint distribution pθ(x, z) = pθ(x|z)pθ(z), which is composed of the con-
ditional likelihood and the prior. Learning the model parameters and inferring the posterior p(z|x)
are intractable for all but the simplest models, as they require evaluating the marginal likelihood,
pθ(x) =

∫
pθ(x, z)dz, which involves integrating the model over z. For this reason, we often turn to

approximate inference methods.

Variational inference reformulates this intractable integration as an optimization problem by introduc-
ing an approximate posterior1 q(z|x), typically chosen from some tractable family of distributions,
and minimizing the KL-divergence from the true posterior, DKL(q(z|x)||p(z|x)). This quantity
cannot be minimized directly, as it contains the true posterior. Instead, the KL-divergence can be
decomposed into

DKL(q(z|x)||p(z|x)) = log pθ(x)− L, (1)

where L is the evidence lower bound (ELBO), which is defined as:

L ≡ Ez∼q(z|x) [log pθ(x, z)− log q(z|x)] (2)

= Ez∼q(z|x) [log pθ(x|z)]−DKL(q(z|x)||pθ(z)). (3)

Briefly, the first term in eq. 3 can be considered as a reconstruction term, as it expresses how well
the output fits the data example. The second term can be considered as a regularization term, as
it quantifies the dissimilarity between the latent representation and the prior. Because log pθ(x)
is not a function of q(z|x), in eq. 1 we can minimize DKL(q(z|x)||p(z|x)), thereby performing
approximate inference, by maximizing L w.r.t. q(z|x). Likewise, because DKL(q(z|x)||p(z|x)) is
non-negative, L is a lower bound on log pθ(x), meaning that if we have inferred an optimal q(z|x),
learning corresponds to maximizing L w.r.t. θ.

2.2 Variational Expectation Maximization (EM)

The optimization procedures involved in inference and learning, when implemented using conven-
tional gradient ascent techniques, are respectively the expectation and maximization steps of the varia-
tional EM algorithm [6], which alternate until convergence. When q(z|x) takes a parametric form, the
expectation step for data example x(i) involves finding a set of distribution parameters, λ(i), that are
optimal. With a factorized Gaussian density over continuous variables, i.e. λ(i) = {µ(i)

q ,σ
2(i)
q } and

q(z(i)|x(i)) = N (z(i);µ
(i)
q ,diagσ

2(i)
q), this entails repeatedly estimating the stochastic gradients

∇λ(i)L to optimize L w.r.t. λ(i). This direct optimization procedure, which is repeated for each
example, is not only computationally costly for expressive generative models and large data sets, but
also sensitive to step sizes and initial conditions.

2.3 Inference Models

Amortized inference [8] replaces the optimization of each set of local approximate posterior parame-
ters, λ(i), with the optimization of a set of global parameters, φ, contained within an inference model.
Taking x(i) as input, this model directly outputs estimates of λ(i). Sharing the inference model
across data examples allows for an efficient algorithm, in which φ and θ can be updated jointly. The
canonical example, the variational auto-encoder (VAE) [9, 10], employs the reparameterization trick
to propagate stochastic gradients from the generative model to the inference model, both of which
are parameterized by neural networks. The formulation has an intuitive interpretation: the inference

1We use q(z|x) to denote that the approximate posterior is conditioned on a data example (i.e. local), however
this need not be through a direct functional dependence.

2

Figure 1: Optimization surface of L (in nats) for a 2-D latent Gaussian model and a particular MNIST
data example. Shown on the plot are the MAP (optimal estimate), the output of a standard inference
model (VAE), and an expectation step trajectory of variational EM using stochastic gradient ascent.
The plot on the right shows the estimates of each inference scheme near the optimum. The expectation
step arrives at a better final inference estimate than the standard inference model.

model encodes x into q(z|x), and the generative model decodes samples from q(z|x) into p(x|z).
Throughout the rest of this paper, we refer to inference models of this form as standard inference
models.

3 Iterative Inference Models

In Section 3.2, we introduce our contribution, iterative inference models. We first motivate our
approach in Section 3.1 by interpreting standard inference models in VAEs as optimization models,
i.e. models that learn to perform optimization. Using insights from other optimization models, this
interpretation extends and improves upon standard inference models.

3.1 Inference Models are Optimization Models

As described in Section 2.1, variational inference transforms inference into the maximization ofLw.r.t.
the parameters of q(z|x), constituting the expectation step of the variational EM algorithm. In general,
this is a non-convex optimization problem, making it somewhat surprising that an inference model can
learn to output reasonable estimates of q(z|x) across data examples. Of course, directly comparing
inference schemes is complicated by the fact that generative models adapt to accommodate their
approximate posteriors. Nevertheless, inference models attempt to replace traditional optimization
techniques with a learned mapping from x to q(z|x).
We demonstrate this point in Figure 1 by visualizing the optimization surface of L defined by a trained
2-D latent Gaussian model and a particular data example, in this case, a binarized MNIST digit. To
visualize the surface, we use a 2-D point estimate as the approximate posterior, q(z|x) = δ(z = µq),
where µq = (µ1, µ2) ∈ R2 and δ is the Dirac delta function. See Appendix C.1 for further details.
Shown on the plot are the MAP estimate, the estimate from a trained inference model, and an
expectation step trajectory using stochastic gradient ascent on µq. The expectation step arrives at
a better final estimate, but it requires many iterations and is dependent on the step size and initial
estimate. The inference model outputs a near-optimal estimate in one forward pass without hand
tuning (other than the architecture), but it is restricted to this single estimate.

This example illustrates how inference models differ from conventional optimization techniques.
Despite having no convergence guarantees on inference optimization, inference models have been
shown to work well empirically. However, by learning a direct mapping from x to q(z|x), standard
inference models are restricted to only single-step estimation procedures. This restriction may
result in worse inference estimates, thereby limiting the quality of the accompanying generative
model. To improve upon this paradigm, we take inspiration from the area of learning to learn, where
Andrychowicz et al. [11] showed that an optimizer model, instantiated as a recurrent neural network,

3

(a) Variational EM (b) Standard Inference Model (c) Iterative Inference Model

Figure 2: Plate notation for a latent variable model (solid lines) with each inference scheme (dashed
lines). θ refers to the generative model (decoder) parameters. ∇λL denotes the gradients of the
ELBO w.r.t. the distribution parameters, λ, of the approximate posterior, q(z|x). Iterative inference
models learn to perform approximate inference optimization by using these gradients and a set of
inference model (encoder) parameters, φ.

can learn to optimize the parameters of an optimizee model, another neural network, for various
tasks. The optimizer model receives the optimizee’s parameter gradients and outputs updates to
these parameters to improve the optimizee’s loss. Because the computational graph is differentiable,
the optimizer’s parameters can then be learned. Optimization models can learn to adaptively adjust
update step sizes, potentially speeding up and improving optimization.

While Andrychowicz et al. focus primarily on parameter optimization (i.e. learning), an analogous
approach could be applied to inference optimization in latent variable models. We refer to this class
of optimization models as iterative inference models, as they are inference models that iteratively
update their approximate posterior estimates. Our work differs from that of Andrychowicz et al. in
that variational inference is a qualitatively different optimization problem, we utilize non-recurrent
optimization models, and we provide an alternative model formulation that approximates gradient
steps (see Section 4.1). We formalize our approach in the following section.

3.2 Iterative Inference Models

We present iterative inference models starting from the context of standard inference models. For a
standard inference model f with parameters φ, the estimate of the approximate posterior distribution
parameters λ(i) for data example x(i) is of the form:

λ(i) = f(x(i);φ). (4)

We propose to instead use an iterative inference model, also denoted as f with parameters φ. With
L(i)
t ≡ L(x(i),λ

(i)
t ; θ) as the ELBO for data example x(i) at inference iteration t, the model uses the

approximate posterior gradients, denoted∇λL(i)
t , to output updated estimates of λ(i):

λ
(i)
t+1 = ft(∇λL(i)

t ,λ
(i)
t ;φ), (5)

where λ(i)
t is the estimate of λ(i) at inference iteration t. We use ft to highlight that the form of f

at iteration t may depend on hidden states within the iterative inference model, such as those found
within recurrent neural networks. See Figure 2 for a schematic comparison of iterative inference
models with variational EM and standard inference models. As with standard inference models,
the parameters of an iterative inference model can be updated using stochastic estimates of ∇φL,
obtained through the reparameterization trick or other methods. Model parameter updating is typically
performed using standard optimization techniques. Note that eq. 5 is in a general form and contains,
as a special case, the residual updating scheme used in [11].

4 Iterative Inference in Latent Gaussian Models

We now describe an example of iterative inference models for latent Gaussian generative mod-
els, deriving the gradients to understand the source of the approximate posterior updates. Latent
Gaussian models are latent variable models with Gaussian prior distributions over latent variables:

4

p(z) = N (z;µp,diagσ
2
p). This class of models is often used in VAEs and is a common choice

for representing continuous-valued latent variables. While the approximate posterior can be any
probability density, it is typically also chosen as Gaussian: q(z|x) = N (z;µq,diagσ

2
q). With this

choice, λ(i) corresponds to {µ(i)
q ,σ

2(i)
q } for example x(i). Dropping the superscript (i) to simplify

notation, we can express eq. 5 for this model as:

µq,t+1 = f
µq

t (∇µqLt,µq,t;φ), (6)

σ2
q,t+1 = f

σ2
q

t (∇σ2
q
Lt,σ2

q,t;φ), (7)

where fµq

t and f
σ2

q

t are the iterative inference models for updating µq and σ2
q respectively. For

continuous observations, we can use a Gaussian output density: p(x|z) = N (x;µx,diagσ
2
x). Here,

µx = µx(z) is a non-linear function of z, and σ2
x is a global parameter, a common assumption in

these models. The approximate posterior parameter gradients for this model are (see Appendix A):

∇µq
L = EN (ε;0,I)

[
∂µx

∂µq

ᵀx− µx

σ2
x

− µq + σq � ε− µp
σ2
p

]
(8)

∇σ2
q
L = EN (ε;0,I)

[
∂µx

∂σ2
q

ᵀx− µx

σ2
x

−
(
diag

ε

2σq

)ᵀ
µq + σq � ε− µp

σ2
p

]
− 1

2σ2
q

, (9)

where ε ∼ N (0, I) is the auxiliary noise variable from the reparameterization trick, � denotes
element-wise multiplication, and all division is performed element-wise. In Appendix A, we also
derive the corresponding gradients for a Bernoulli output distribution, which take a similar form.
Although we only derive gradients for these two output distributions, note that iterative inference
models can be used with any distribution form. We now briefly discuss the terms in eqs. 8 and 9.
Re-expressing the reparameterized latent variable as z = µq +σq � ε, the gradients have two shared
terms, (x− µx)/σ

2
x and (z− µp)/σ2

p, the precision-weighted errors at the observed (“bottom-up")
and latent (“top-down") levels respectively. The terms ∂µx

∂µq
and ∂µx

∂σ2
q

are the Jacobian matrices of µx

w.r.t. the approximate posterior parameters, which effectively invert the output model. Understanding
the significance of each term, in the following section we provide an alternative formulation of
iterative inference models for latent Gaussian generative models.

4.1 Approximating the Approximate Posterior Gradients

The approximate posterior gradients are inherently stochastic, arising from the fact that evaluating
L involves approximating expectations (eq. 2) using Monte Carlo samples of z ∼ q(z|x). As these
estimates always contain some degree of noise, a close approximation to these gradients should also
suffice for updating the approximate posterior parameters. The motivations for this are two-fold: (1)
approximate gradients may be easier to compute, especially in an online setting, and (2) by encoding
more general terms, the inference model may be able to approximate higher-order approximate
posterior derivatives, allowing for faster convergence. We now provide an alternative formulation of
iterative inference models for latent Gaussian models that approximates gradient information.

With the exception of ∂µx

∂µq
and ∂µx

∂σ2
q

, all terms in eqs. 8 and 9 can be easily computed using x and the
distribution parameters of p(x|z), p(z), and q(z|x). Likewise, higher-order approximate posterior
derivatives consist of these common terms as well as higher-order derivatives of the output model.
As the output model derivatives are themselves functions, by encoding only the common terms, we
can offload these (approximate) derivative calculations onto the iterative inference model. Again
dropping the superscript (i), one possible set-up is formulated as follows:

µq,t+1 = f
µq

t (εx,t, εz,t,µq,t;φ), (10)

σ2
q,t+1 = f

σ2
q

t (εx,t, εz,t,σ
2
q,t;φ), (11)

where, in the case of a Gaussian output density, the stochastic error terms are defined as

εx,t ≡ Eεt [(x− µt,x)/σ2
x], εz,t ≡ Eεt [(µq,t + σq,t � εt − µp)/σ2

p].

5

This encoding scheme resembles the approach taken in DRAW [12], where reconstruction errors,
x− µt,x, are iteratively encoded. However, DRAW and later variants [13] do not explicitly account
for latent errors, εz,t, or approximate posterior estimates. If possible, these terms must instead
be implicitly handled by the inference model’s hidden states. In Section 5.2, we demonstrate that
iterative inference models of this form do indeed work empirically.

4.2 Relationship to Conventional Variational Auto-Encoders

Under a certain set of assumptions, single-iteration iterative inference models of the derivative
approximating form proposed in Section 4.1 are equivalent to standard inference models, as used in
conventional VAEs. Specifically, assuming:

1. the initial approximate posterior estimate is a global constant: N (z;µq,0,diagσ
2
q,0),

2. the prior is a global constant: N (z;µp,diagσ
2
p),

3. we are in the limit of infinite samples of the initial auxiliary variable ε0,

then the initial approximate posterior estimate (µq,0,σ2
q,0) and initial latent error (εz,0) are constants

and the initial observation error (εx,0) is a constant affine transformation of the observation (x).
When the inference model is a neural network, then encoding x or an affine transformation of x is
equivalent (assuming the inputs are properly normalized). Therefore, eqs. 10 and 11 simplify to
that of a standard inference model, eq. 4. From this perspective, standard inference models can be
interpreted as single-step optimization models that learn to approximate derivatives at a single latent
point. In the following section, we consider the case in which the second assumption is violated;
iterative inference models naturally handle this case, whereas standard inference models do not.

4.3 Extension: Inference in Hierarchical Latent Variable Models

Hierarchical latent variable models contain higher level latent variables that provide empirical priors
on lower level variables; pθ(z) is thus observation-dependent (see Figure 7 in Appendix A.6). The
approximate posterior gradients for an intermediate level in a hierarchical latent Gaussian model
(see Appendix A.6) take a similar form as eqs. 8 and 9, comprising bottom-up errors from lower
variables and top-down errors from higher variables. Iterative inference models encode both of these
errors, either directly or through the gradient. However, standard inference models, which map x and
lower latent variables to each level of latent variables, can only approximate bottom-up information.
Lacking top-down prior information, these models must either use a less expressive prior or output
poor approximate posterior estimates. Sønderby et al. [14] identified this phenomenon, proposing a
“top-down inference" technique. Iterative inference models formalize and extend this technique.

5 Experiments

We performed experiments using latent Gaussian models trained on MNIST, Omniglot [15], Street
View House Numbers [16], and CIFAR-10 [17]. MNIST and Omniglot were dynamically binarized
and modeled with Bernoulli output distributions, and Street View House Numbers and CIFAR-10
were modeled with Gaussian output distributions, using the procedure from [13]. All experiments
presented here use fully-connected neural networks. Additional experiment details, including model
architectures and optimizers, can be found in Appendix C. Source code will be released online.

5.1 Visualizing Approximate Inference Optimization

To visualize the ability of iterative inference models to optimize the approximate posterior, we tested
these models in the simplified setting of a 2D latent Gaussian model, trained on MNIST, with a point
estimate approximate posterior. The generative model architecture and approximate posterior form
are identical to those used in Section 3.1 (see Appendix C.1). Here we show a result from encoding x
and∇µqL through a feedforward neural network. In Figure 3, we visualize an optimization trajectory
taken by this model for a particular test example. Despite lacking convergence guarantees, the model
learns to adaptively adjust inference update step sizes to navigate the optimization surface, arriving
and remaining at a near-optimal approximate posterior estimate for this example.

6

Figure 3: Optimization trajectory along L (in nats) of an iterative inference model with a 2D latent
Gaussian model for a particular MNIST test example. The iterative inference model learns to
adaptively adjust inference update step sizes to iteratively refine the approximate posterior estimate.

(a) (b)

(c) (d)

Figure 4: Reconstructions over inference iterations (left to right) for test examples from (a) MNIST,
(b) Omniglot, (c) Street View House Numbers, and (d) CIFAR-10. Corresponding data examples are
shown on the far right of each panel. Empirically, reconstructions become gradually sharper as the
iterative inference models traverse the optimization surface, remaining stable after many iterations.

Approximate inference optimization can also be visualized through data reconstructions. In eq. 3, the
reconstruction term encourages q(z|x) to represent outputs that closely match the data examples. As
this is typically the dominant term in L, during inference optimization, the output reconstructions
should improve in terms of visual quality, more closely matching x. We demonstrate this phenomenon
with iterative inference models for several data sets in Figure 4 (see Appendix C.2 for details additional
reconstructions.). Reconstruction quality noticeably improves during inference.

5.2 Additional Latent Samples & Inference Iterations

We highlight two unique aspects of iterative inference models: direct improvement with additional
samples and inference iterations. Additional approximate posterior samples provide more precise
gradient estimates, potentially allowing an iterative inference model to output more precise updates.
To verify this, we trained standard and iterative inference models on MNIST using 1, 5, 10, and 20
approximate posterior samples. Iterative inference models were trained by encoding the data (x) and
approximate posterior gradients (∇λL) for 5 iterations. The results are shown in Figure 5a, where
we observe that the iterative inference model improved by more than 1 nat with additional samples,
while the standard inference model improved by 0.5 nats.

7

(a) (b)

Figure 5: Test performance on MNIST of standard and iterative inference models for (a) additional
samples and (b) additional inference iterations during training. Iterative inference models improve
significantly with both quantities. Lines are for visualization and do not imply interpolation.

We investigated the effect of training with additional inference iterations while encoding approximate
posterior gradients (∇λL) or errors (εx, εz), with or without the data (x). Section 4 and Appendix
A define these terms. Experiments were performed on MNIST, with results for 2, 5, 10, and 16
inference iterations in Figure 5b. All encoding schemes outperformed standard inference models
with the same architecture. Encoding the data was beneficial, allowing the inference model to trade
off between learning a direct and iterative mapping. Encoding errors allows the iterative inference
model to approximate higher order derivatives (Section 4.1), which we observe helps when training
with fewer inference iterations. However, it appears that these approximations are less helpful with
additional iterations, where derivative approximation errors likely limit performance.

5.3 Comparison with Standard Inference Models & Variational EM

Table 1 contains the marginal log-likelihood performance on MNIST and CIFAR-10 for standard
and iterative inference models, including hierarchical iterative inference models. Iterative inference
models were trained by encoding the data and errors for 5 inference iterations. With the same
architecture, iterative inference models outperform their standard counterparts. See Appendix C.5
for details and discussion. We also compared the inference optimization performance of iterative
inference models with variational EM expectation steps using various optimizers. In Figure 6, we
observe that iterative inference models empirically converge substantially faster, even with only
local gradient information. See Appendix C.6 for details and discussion. Iterative inference models
outperform standard inference models, yet are more computationally efficient than variational EM.

Table 1: Test set performance on MNIST (in nats)
and CIFAR-10 (in bits/input dimension) for stan-
dard and iterative inference models.

− log p(x) ≈
MNIST

One-Level Model
Standard (VAE) 84.14± 0.02
Iterative 83.84± 0.05

Hierarchical Model
Standard (VAE) 82.63± 0.01
Iterative 82.457± 0.001

CIFAR-10
One-Level Model

Standard (VAE) 5.823± 0.001
Iterative 5.71± 0.02

Figure 6: Comparison of inference optimization
performance on MNIST test set between iterative
inference models and conventional optimization
techniques. Iterative inference models empirically
converge faster.

8

6 Conclusion

We have proposed a new class of inference models, which, by encoding approximate posterior
gradients, learn to iteratively refine their inference estimates. These models relate to previous work
on VAEs, as well as learning to learn. We have demonstrated that these models can indeed learn to
perform approximate posterior optimization, and we have shown the empirical advantages of this
approach over current inference techniques on benchmark data sets. Combining iterative inference
models with other recent advances in Bayesian deep learning could yield additional insights.

References
[1] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,

Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. Fifth International Conference on Learning Representations,
ICLR, 2016.

[2] Tianfan Xue, Jiajun Wu, Katherine Bouman, and Bill Freeman. Visual dynamics: Probabilistic
future frame synthesis via cross convolutional networks. In Advances in Neural Information
Processing Systems, pages 91–99, 2016.

[3] Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt. Deep variational
bayes filters: Unsupervised learning of state space models from raw data. Fifth International
Conference on Learning Representations, ICLR, 2017.

[4] Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing
the description length of the weights. In Proceedings of the sixth annual conference on
Computational learning theory, pages 5–13. ACM, 1993.

[5] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduc-
tion to variational methods for graphical models. NATO ASI SERIES D BEHAVIOURAL AND
SOCIAL SCIENCES, 89:105–162, 1998.

[6] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the royal statistical society. Series B (methodological),
pages 1–38, 1977.

[7] Radford M Neal and Geoffrey E Hinton. A view of the em algorithm that justifies incremental,
sparse, and other variants. In Learning in graphical models, pages 355–368. Springer, 1998.

[8] Samuel Gershman and Noah Goodman. Amortized inference in probabilistic reasoning. In
Proceedings of the Cognitive Science Society, volume 36, 2014.

[9] Diederik P Kingma and Max Welling. Stochastic gradient vb and the variational auto-encoder.
In Second International Conference on Learning Representations, ICLR, 2014.

[10] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. Proceedings of the 31st International
Conference on Machine Learning, pages 1278–1286, 2014.

[11] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom
Schaul, and Nando de Freitas. Learning to learn by gradient descent by gradient descent. In
Advances in Neural Information Processing Systems, pages 3981–3989, 2016.

[12] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra.
Draw: A recurrent neural network for image generation. Proceedings of the 32nd International
Conference on Machine Learning, pages 1462–1471, 2015.

[13] Karol Gregor, Frederic Besse, Danilo Jimenez Rezende, Ivo Danihelka, and Daan Wierstra.
Towards conceptual compression. In Advances In Neural Information Processing Systems,
pages 3549–3557, 2016.

9

[14] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther.
Ladder variational autoencoders. In Advances in Neural Information Processing Systems, pages
3738–3746, 2016.

[15] Brenden M Lake, Ruslan R Salakhutdinov, and Josh Tenenbaum. One-shot learning by inverting
a compositional causal process. In Advances in neural information processing systems, pages
2526–2534, 2013.

[16] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, page 5, 2011.

[17] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
2009.

[18] Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep networks. In
Advances in neural information processing systems, pages 2377–2385, 2015.

[19] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[20] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

10

A Approximate Posterior Gradients for Latent Gaussian Models

A.1 Model & Objective

Consider a latent variable model, pθ(x, z) = pθ(x|z)pθ(z), where the prior on z is a factorized
Gaussian density, pθ(z) = N (z;µp,diagσ

2
x), and the conditional likelihood, pθ(x|z), is Bernoulli

for binary observations or Gaussian for continuous observations. We introduce an approximate
posterior distribution, q(z|x), which can be any parametric probability density defined over real
values. Here, we assume that q also takes the form of a factorized Gaussian density, q(z|x) =
N (z;µq,diagσ

2
q). The objective during variational inference is to maximize L w.r.t. the parameters

of q(z|x), i.e. µq and σ2
q :

µ∗q ,σ
2∗
q = argmax

µq,σ2
q

L. (12)

To solve this optimization problem, we will inspect the gradients∇µq
L and∇σ2

q
L, which we now

derive. The objective can be written as:

L = Eq(z|x) [log pθ(x, z)− log q(z|x)] (13)

= Eq(z|x) [log pθ(x|z) + log pθ(z)− log q(z|x)] . (14)

Plugging in pθ(z) and q(z|x):

L = EN (z;µq,diagσ2
q)

[
log pθ(x|z) + logN (z;µp,diagσ

2
p)− logN (z;µq,diagσ

2
q)
]

(15)

Since expectation and differentiation are linear operators, we can take the expectation and derivative
of each term individually.

A.2 Gradient of the Log-Prior

We can write the log-prior as:

logN (z;µp, (diagσ
2
p) = −

1

2
log
(
(2π)nz |diagσ2

p|
)
− 1

2
(z− µp)ᵀ(diagσ2

p)
−1(z− µp), (16)

where nz is the dimensionality of z. We want to evaluate the following terms:

∇µqEN (z;µq,diagσ2
q)

[
−1

2
log
(
(2π)nz |diagσ2

p|
)
− 1

2
(z− µp)ᵀ(diagσ2

p)
−1(z− µp)

]
(17)

and

∇σ2
q
EN (z;µq,diagσ2

q)

[
−1

2
log
(
(2π)nz |diagσ2

p|
)
− 1

2
(z− µp)ᵀ(diagσ2

p)
−1(z− µp)

]
. (18)

To take these derivatives, we will use the reparameterization trick to re-express z = µq + σq � ε,
where ε ∼ N (0, I) is an auxiliary standard Gaussian variable, and � denotes the element-wise
product. We can now perform the expectations over ε, allowing us to bring the gradient operators
inside the expectation brackets. The first term in eqs. 17 and 18 does not depend on µq or σ2

q , so we
can write:

EN (ε;0,I)

[
∇µq

(
−1

2
(µq + σq � ε− µp)ᵀ(diagσ2

p)
−1(µq + σq � ε− µp)

)]
(19)

and

EN (ε;0,I)

[
∇σ2

q

(
−1

2
(µq + σq � ε− µp)ᵀ(diagσ2

p)
−1(µq + σq � ε− µp)

)]
. (20)

To simplify notation, we define the following term:

ξ ≡ (diagσ2
p)
−1/2(µq + σq � ε− µp), (21)

allowing us to rewrite eqs. 19 and 20 as:

EN (ε;0,I)

[
∇µq

(
−1

2
ξᵀξ

)]
= EN (ε;0,I)

[
− ∂ξ

ᵀ

∂µq
ξ

]
(22)

11

and

EN (ε;0,I)

[
∇σ2

q

(
−1

2
ξᵀξ

)]
= EN (ε;0,I)

[
− ∂ξ

ᵀ

∂σ2
q

ξ

]
. (23)

We must now find ∂ξ
∂µq

and ∂ξ
∂σ2

q
:

∂ξ

∂µq
=

∂

∂µq

(
(diagσ2

p)
−1/2(µq + σq � ε− µp)

)
= (diagσ2

p)
−1/2 (24)

and
∂ξ

∂σ2
q

=
∂

∂σ2
q

(
(diagσ2

p)
−1/2(µq + σq � ε− µp)

)
= (diagσ2

p)
−1/2 diag

ε

2σq
, (25)

where division is performed element-wise. Plugging eqs. 24 and 25 back into eqs. 22 and 23, we get:

EN (ε;0,I)

[
−
(
(diagσ2

p)
−1/2

)ᵀ
(diagσ2

p)
−1/2(µq + σq � ε− µp)

]
(26)

and

EN (ε;0,I)

[
−
(
diag

ε

2σq

)ᵀ (
(diagσ2

p)
−1/2

)ᵀ
(diagσ2

p)
−1/2(µq + σq � ε− µp)

]
. (27)

Putting everything together, we can express the gradients as:

∇µqEN (z;µq,diagσ2
q)

[
logN (z;µp,diagσ

2
p)
]
= EN (ε;0,I)

[
−µq + σq � ε− µp

σ2
p

]
, (28)

and

∇σ2
q
EN (z;µq,diagσ2

q)

[
logN (z;µp,diagσ

2
p)
]
=

EN (ε;0,I)

[
−
(
diag

ε

2σq

)ᵀ
µq + σq � ε− µp

σ2
p

]
. (29)

A.3 Gradient of the Log-Approximate Posterior

We can write the log-approximate posterior as:

logN (z;µq,diagσ
2
q) = −

1

2
log
(
(2π)nz |diagσ2

q |
)
− 1

2
(z− µq)ᵀ(diagσ2

q)
−1(z− µq), (30)

where nz is the dimensionality of z. Again, we will use the reparameterization trick to re-express the
gradients. However, notice what happens when plugging the reparameterized z = µq + σq � ε into
the second term of eq. 30:

−1

2
(µq+σq�ε−µq)ᵀ(diagσ2

q)
−1(µq+σq�ε−µq) = −

1

2

(σq � ε)ᵀ(σq � ε)
σ2
q

= −1

2
εᵀε. (31)

This term does not depend on µq or σ2
q . Also notice that the first term in eq. 30 depends only on σ2

q .
Therefore, the gradient of the entire term w.r.t. µq is zero:

∇µqEN (z;µq,diagσ2
q)

[
logN (z;µq,diagσ

2
q)
]
= 0. (32)

The gradient w.r.t. σ2
q is

∇σ2
q

(
−1

2
log
(
(2π)nz |diagσ2

q |
))

= −1

2
∇σ2

q

(
log |diagσ2

q |
)
= −1

2
∇σ2

q

∑
j

log σ2
q,j = −

1

2σ2
q

.

(33)
Note that the expectation has been dropped, as the term does not depend on the value of the sampled
z. Thus, the gradient of the entire term w.r.t. σ2

q is:

∇σ2
q
EN (z;µq,diagσ2

q)

[
logN (z;µq,diagσ

2
q)
]
= − 1

2σ2
q

. (34)

12

A.4 Gradient of the Log-Conditional Likelihood

The form of the conditional likelihood will depend on the data, e.g. binary, discrete, continuous, etc.
Here, we derive the gradient for Bernoulli (binary) and Gaussian (continuous) conditional likelihoods.

Bernoulli Output Distribution The log of a Bernoulli output distribution takes the form:

logB(x;µx) = (logµx)
ᵀx+ (log(1− µx))

ᵀ(1− x), (35)

where µx = µx(z, θ) is the mean of the output distribution. We drop the explicit dependence on z
and θ to simplify notation. We want to compute the gradients

∇µqEN (z;µq,diagσ2
q)
[(logµx)

ᵀx+ (log(1− µx))
ᵀ(1− x)] (36)

and
∇σ2

q
EN (z;µq,diagσ2

q)
[(logµx)

ᵀx+ (log(1− µx))
ᵀ(1− x)] . (37)

Again, we use the reparameterization trick to re-express the expectations, allowing us to bring the
gradient operators inside the brackets. Using z = µq + σq � ε, eqs. 36 and 37 become:

EN (ε;0,I)

[
∇µq

((logµx)
ᵀx+ (log(1− µx))

ᵀ(1− x))
]

(38)

and
EN (ε;0,I)

[
∇σ2

q
((logµx)

ᵀx+ (log(1− µx))
ᵀ(1− x))

]
, (39)

where µx is re-expressed as function of µq,σ2
q , ε, and θ. Distributing the gradient operators yields:

EN (ε;0,I)

[
∂(logµx)

ᵀ

∂µq
x+

∂(log(1− µx))
ᵀ

∂µq
(1− x)

]
(40)

and

EN (ε;0,I)

[
∂(logµx)

ᵀ

∂σ2
q

x+
∂(log(1− µx))

ᵀ

∂σ2
q

(1− x)

]
. (41)

Taking the partial derivatives and combining terms gives:

EN (ε;0,I)

[
∂µx

∂µq

ᵀ x

µx
− ∂µx

∂µq

ᵀ 1− x

1− µx

]
= EN (ε;0,I)

[
∂µx

∂µq

ᵀ x− µx

µx � (1− µx)

]
(42)

and

EN (ε;0,I)

[
∂µx

∂σ2
q

ᵀ x

µx
− ∂µx

∂σ2
q

ᵀ 1− x

1− µx

]
= EN (ε;0,I)

[
∂µx

∂σ2
q

ᵀ x− µx

µx � (1− µx)

]
. (43)

Gaussian Output Density The log of a Gaussian output density takes the form:

logN (x;µx,diagσ
2
x) = −

1

2
log
(
(2π)nx |diagσ2

x|
)
− 1

2
(x− µx)

ᵀ(diagσ2
x)
−1(x− µx), (44)

where µx = µx(z, θ) is the mean of the output distribution and σ2
x = σ2

x(θ) is the variance. We
assume σ2

x is not a function of z to simplify the derivation, however, using σ2
x = σ2

x(z, θ) is possible
and would simply result in additional gradient terms in ∇µq

L and ∇σ2
q
L. We want to compute the

gradients

∇µq
EN (z;µq,diagσ2

q)

[
−1

2
log
(
(2π)nx |diagσ2

x|
)
− 1

2
(x− µx)

ᵀ(diagσ2
x)
−1(x− µx)

]
(45)

and

∇σ2
q
EN (z;µq,diagσ2

q)

[
−1

2
log
(
(2π)nx |diagσ2

x|
)
− 1

2
(x− µx)

ᵀ(diagσ2
x)
−1(x− µx)

]
. (46)

The first term in eqs. 45 and 46 is zero, since σ2
x does not depend on µq or σ2

q . To take the gradients,
we will again use the reparameterization trick to re-express z = µq + σq � ε. We now implicitly
express µx as µx(µq,σ

2
q , θ). We can then write:

EN (ε;0,I)

[
∇µq

(
−1

2
(x− µx)

ᵀ(diagσ2
x)
−1(x− µx)

)]
(47)

13

and

EN (ε;0,I)

[
∇σ2

q

(
−1

2
(x− µx)

ᵀ(diagσ2
x)
−1(x− µx)

)]
. (48)

To simplify notation, we define the following term:

ξ ≡ (diagσ2
x)
−1/2(x− µx), (49)

allowing us to rewrite eqs. 47 and 48 as

EN (ε;0,I)

[
∇µq

(
−1

2
ξᵀξ

)]
= EN (ε;0,I)

[
− ∂ξ

ᵀ

∂µq
ξ

]
(50)

and

EN (ε;0,I)

[
∇σ2

q

(
−1

2
ξᵀξ

)]
= EN (ε;0,I)

[
− ∂ξ

ᵀ

∂σ2
q

ξ

]
. (51)

We must now find ∂ξ
∂µq

and ∂ξ
∂σ2

q
:

∂ξ

∂µq
=

∂

∂µq

(
(diagσ2

x)
−1/2(x− µx)

)
= −(diagσ2

x)
−1/2 ∂µx

∂µq
(52)

and
∂ξ

∂σ2
q

=
∂

∂σ2
q

(
(diagσ2

x)
−1/2(x− µx)

)
= −(diagσ2

x)
−1/2 ∂µx

∂σ2
q

. (53)

Plugging these expressions back into eqs. 50 and 51 gives

EN (ε;0,I)

[
∂µx

∂µq

ᵀ

((diagσ2
x)
−1/2)ᵀ(diagσ2

x)
−1/2(x− µx)

]
= EN (ε;0,I)

[
∂µx

∂µq

ᵀx− µx

σ2
x

]
(54)

and

EN (ε;0,I)

[
∂µx

∂σ2
q

ᵀ

((diagσ2
x)
−1/2)ᵀ(diagσ2

x)
−1/2(x− µx)

]
= EN (ε;0,I)

[
∂µx

∂σ2
q

ᵀx− µx

σ2
x

]
. (55)

Despite having different distribution forms, Bernoulli and Gaussian output distributions result in
approximate posterior gradients of a similar form: the Jacobian of the output model multiplied by a
weighted error term.

A.5 Summary

Putting the gradient terms from log pθ(x|z), log pθ(z), and log q(z|x) together, we arrive at

Bernoulli Output Distribution:

∇µq
L = EN (ε;0,I)

[
∂µx

∂µq

ᵀ x− µx

µx � (1− µx)
− µq + σq � ε− µp

σ2
p

]
(56)

∇σ2
q
L = EN (ε;0,I)

[
∂µx

∂σ2
q

ᵀ x− µx

µx � (1− µx)
−
(
diag

ε

2σq

)ᵀ
µq + σq � ε− µp

σ2
p

]
− 1

2σ2
q

(57)

Gaussian Output Distribution:

∇µq
L = EN (ε;0,I)

[
∂µx

∂µq

ᵀx− µx

σ2
x

− µq + σq � ε− µp
σ2
p

]
(58)

∇σ2
q
L = EN (ε;0,I)

[
∂µx

∂σ2
q

ᵀx− µx

σ2
x

−
(
diag

ε

2σq

)ᵀ
µq + σq � ε− µp

σ2
p

]
− 1

2σ2
q

(59)

14

Figure 7: Plate notation for a hierarchical latent variable model consisting of L levels of latent
variables. Variables at higher levels provide empirical priors on variables at lower levels. With
data-dependent priors, the model has more flexibility in representing the intricacies of each data
example.

A.6 Approximate Posterior Gradients in Hierarchical Models

Hierarchical latent variable models factorize the latent variables over multiple levels, z =
{z1, z2, . . . , zL}. Latent variables at higher levels provide empirical priors on latent variables
at lower levels. For an intermediate latent level, we use the notation q(z`|·) = N (z`;µ`,q,diagσ

2
`,q)

and p(z`|z`+1) = N (z`;µ`,p,diagσ
2
`,p) to denote the approximate posterior and prior respectively.

If we assume a strict hierarchy, i.e. zL → zL−1 → · · · → z1 → x, then the approximate posterior
gradients at an intermediate level ` are:

∇µq,`
L = EN (ε;0,I)

[
∂µ`−1,p
∂µ`,q

ᵀµ`−1,q + σ`−1,q � ε`−1 − µ`−1,p
σ2
`−1,p

− µ`,q + σ`,q � ε` − µ`,p
σ2
`,p

]
, (60)

∇σ2
q
L = EN (ε;0,I)

[
∂µ`−1,p
∂σ2

`,q

ᵀµ`−1,q + σ`−1,q � ε`−1 − µ`−1,p
σ2
`−1,p

−
(
diag

ε`
2σ`,q

)ᵀ
µ`,q + σ`,q � ε` − µ`,p

σ2
`,p

]
− 1

2σ2
`,q

. (61)

Notice that these gradients take a similar form to those of a one-level latent variable model. The first
terms inside each expectation can be interpreted as a “bottom-up" gradient coming from reconstruction
errors at the level below. The second terms inside the expectations can be interpreted as “top-down"
errors coming from priors generated by the level above. The last term in the variance gradient
expresses a form of regularization. Standard hierarchical inference models only contain bottom-up
information, and therefore have no way of estimating the second term in each of these gradients.

B Implementing Iterative Inference Models

Equation 5 provides a general form for an iterative inference model. Here, we provide specific
implementation details for these models. Code for reproducing the experiments will be released
online.

B.1 Input Form

As mentioned in [11], gradients can be on vastly different scales, which is undesirable for training
neural networks. To handle this issue, we adopt the technique they proposed: replacing ∇λL with

15

the concatenation of [α log(|∇λL|+ ε), sign(∇λL)], where α is a scaling constant and ε is a small
constant for numerical stability. This is performed for both parameters in λ = {µq, logσ2

q}. When
encoding the errors, we instead input the concatenation of [εx, εz] (see section 4.1 for definitions of
these terms). As we use global variances on the output and prior densities, we drop σ2

x and σ2
p from

these expressions because they are constant across all examples. We also found it beneficial to encode
the current estimates of µq and logσ2

q . We end by again noting that encoding gradients or errors over
successive iterations can be difficult, as the distributions of these inputs change quickly during both
learning and inference. Work remains to be done in developing iterative encoding architectures that
handle this aspect more thoroughly, perhaps through some form of input normalization or saturation.

B.2 Output Form

For the output form of these models, we use a gated updating scheme, sometimes referred to as a
“highway" connection ([18]). Specifically, approximate posterior parameters are updated according to

λt+1 = gt � λt + (1− gt)� ft(∇λL,λt;φ), (62)

where � represents element-wise multiplication and gt = gt(∇λL,λt;φ) ∈ [0, 1] is the gating
function for λ at time t, which we combine with the iterative inference model ft. We found that this
yielded improved performance and stability over the residual updating scheme used in [11]. In our
experiments with latent Gaussian models, we found that means tend to receive updates over many
iterations, whereas variances (or log variances) tend to receive far fewer updates, often just a single
large update. Further work could perhaps be done in developing schemes that update these two sets
of parameters differently.

B.3 Model Form

We parameterize iterative inference models as neural networks. Although [11] exclusively use
recurrent neural networks, we note that optimization models can also be instantiated with feed-
forward networks. Note that even with a feed-forward network, because the entire model is run over
multiple iterations, the model is technically a recurrent network, though quite different from the
standard RNN formulation. RNN iterative inference models, through hidden or memory states, are
able to account for non-local curvature information, analogous to momentum or other moment terms
in conventional optimization techniques. Feed-forward networks are unable to capture and utilize this
information, but purely local curvature information is still sufficient to update the output estimate,
e.g. vanilla stochastic gradient descent. [11] propagate optimizer parameter gradients (∇φL) from
the optimizee’s loss at each optimization step, giving each step equal weight. We take the same
approach; we found it aids in training recurrent iterative inference models and is essential for training
feed-forward iterative inference models. With a recurrent model, ∇φL is calculated using stochastic
backpropagation through time. With a feed-forward model, we accumulate∇φL at each step using
stochastic backpropagation, then average over the total number of steps. The advantage of using a
feed-forward iterative inference model is that it maintains a constant memory footprint, as we do
not need to keep track of gradients across iterations. However, as mentioned above, this limits the
iterative inference model to only local optimization information.

C Experiment Details

In all experiments, inference model and generative model parameters were learned jointly using the
AdaM optimizer ([19]). The learning rate was set to 0.0002 for both sets of parameters and all other
optimizer parameters were set to their default values. Learning rates were decayed exponentially by a
factor of 0.999 at every epoch. All models utilized exponential linear unit (ELU) activation functions
([20]), although we found other non-linearities to work as well. Unless otherwise stated, all inference
models were symmetric to their corresponding generative models, with the addition of “highway"
connections ([18]) between hidden layers. Though not essential, we found that these connections
improved stability and performance. Iterative inference models for all experiments were implemented
as feed-forward networks to make comparison with standard inference models easier. See appendix
B for further details.

16

C.1 Two-Dimensional Latent Gaussian Models

To visualize the optimization surface and trajectories of latent Gaussian models, we trained models
with 2 latent dimensions and a point estimate approximate posterior. That is, q(z|x) = δ(z = µq)
is a Dirac delta function at the point µq = (µ1, µ2). We used a 2D point estimate approximate
posterior instead of a 1D Gaussian density because it results in more variety in the optimization
surface, making it easier to visualize the optimization. We trained these models on binarized MNIST
due to the data set’s relatively low complexity, meaning that 2 latent dimensions can reasonably
capture the relevant information specific to a data example. The generative models consisted of
a neural network with 2 hidden layers, each with 512 units. The output of the generative model
was the mean of a Bernoulli distribution, and log pθ(x|z) was evaluated using binary cross-entropy.
KL-divergences were estimated using 1 sample of z ∼ q(z|x). The optimization surface of each
model was evaluated on a grid with range [-5, 5] in increments of 0.05 for each latent variable. To
approximate the MAP estimate, we up-sampled the optimization surface using a cubic interpolation
scheme. Figure 1 visualizes the ELBO optimization surface after training for 80 epochs. Figure 3
visualizes the ELBO optimization surface after training (by encoding x, εx, and εz) for 50 epochs.

C.2 Reconstructions Over Inference Iterations

For the qualitative results shown in figure 4, we trained iterative inference models on MNIST,
Omniglot, and Street View House Numbers by encoding approximate posterior gradients (∇λL)
for 16 inference iterations. For CIFAR-10, we had difficulty in obtaining sharp reconstructions in a
reasonable number of inference iterations, so we trained an iterative inference model by encoding
errors for 10 inference iterations. For binarized MNIST and Omniglot, we used a generative model
architecture with 2 hidden layers, each with 512 units, a latent space of size 64, and a symmetric
iterative inference model, with the addition of highway connections at each layer. For Street View
House Numbers and CIFAR-10, we used 3 hidden layers in the iterative inference and 1 in the
generative model, with 2048 units at each hidden layer and a latent space of size 1024.

C.3 Additional Latent Samples

We used the same architecture of 2 hidden layers, each with 512 units, for the output model and
inference models. The latent variables consisted of 64 dimensions. Each model was trained by
drawing the corresponding number of samples from the approximate posterior distribution using the
reparameterization trick, yielding lower variance ELBO estimates and gradients. Iterative inference
models were trained by encoding the data (x) and the approximate posterior gradients (∇λL) for 5
inference iterations. All models were trained for 1,500 epochs.

C.4 Additional Inference Iterations

The model architecture for all encoding schemes was identical to that used in the previous section.
All models were trained by evaluating the ELBO with a single approximate posterior sample. We
trained all models for 1,500 epochs. We were unable to run multiple trials for each experimental
set-up, but on a subset of runs for standard and iterative inference models, we observed that final
performance had a standard deviation less than 0.1 nats, below the difference in performance between
models trained with different numbers of inference iterations.

C.5 Comparison with Standard Inference Models

Directly comparing inference optimization performance between inference techniques is difficult;
inference estimates affect learning, resulting in models that are better suited to the inference scheme.
Instead, to quantitatively compare the performance between standard and iterative inference models,
we trained models with the same architecture using each inference model form. We trained both
one-level and hierarchical models on MNIST and one-level models on CIFAR-10. In each case,
iterative inference models were trained by encoding the data and errors for 5 inference iterations. We
estimated marginal log-likelihoods for each model using 5,000 importance weighted samples per data
example.

17

(a)

(b)

(c)

(d)

Figure 8: Additional reconstructions over inference iterations (left to right) for test examples from
(a) MNIST, (b) Omniglot, (c) Street View House Numbers, and (d) CIFAR-10. Corresponding data
examples are shown on the far right of each panel.

18

C.5.1 MNIST

For MNIST, one-level models consisted of a latent variable of size 64, and the inference and generative
networks both consisted of 2 hidden layers, each with 512 units. Hierarchical models consisted of
2 levels with latent variables of size 64 and 32 in hierarchically ascending order. At each level, the
inference and generative networks consisted of 2 hidden layers, with 512 units at the first level and
256 units at the second level. At the first level of latent variables, we also used a set of deterministic
units, also of size 64, in both the inference and generative networks. Hierarchical models included
batch normalization layers at each hidden layer of the inference and generative networks; we found
this beneficial for training both standard and iterative inference models. Both encoder and decoder
networks in the hierarchical model utilized highway skip connections at each layer at both levels.

C.5.2 CIFAR-10

For CIFAR-10, models consisted of a latent variable of size 1024, an encoder network with 3 hidden
layers of 2048 units with highway connections, and a decoder network with 1 hidden layer with
2048 units. The variance of the output Gaussian distribution was a global variable for this model.
We note that the results reported in table 1 are significantly worse than those typically reported in
the literature, however these results are for relatively small fully-connected networks rather than
larger convolutional networks. We also experimented with hierarchical iterative inference models on
CIFAR-10, but found these models more difficult to train without running into numerical instabilities.

C.6 Comparison with Variational EM

Figure 9: Comparison of inference optimization
performance on MNIST test set between iterative
inference models and conventional optimization
techniques. Performances is plotted in terms of
wall-clock time. Iterative inference models still
outperform other techniques.

Variational EM is not typically used in practice,
as it does not scale well with large models or
large data sets. However, because iterative in-
ference models iteratively optimize the approx-
imate posterior parameters, we felt it would
be beneficial to provide a comparison of in-
ference optimization performance between it-
erative inference models and expectation steps
from variational EM. We used one-level latent
Gaussian models trained with iterative infer-
ence models on MNIST for 16 iterations. We
compared against vanilla SGD, SGD with mo-
mentum, RMSProp, and AdaM, trying learning
rates in {0.5, 0.4, 0.3, 0.2, 0.1, 0.01, 0.001}. In
all comparisons, we found that iterative infer-
ence models outperformed conventional opti-
mization techniques by large margins. Figure 6
shows the optimization performance on the test
set for all optimizers and an iterative inference
model trained by encoding the approximate pos-

terior gradients. The iterative inference model quickly arrives at a stable approximate posterior
estimate, outperforming all optimizers. It is important to note that the iterative inference model here
actually has less derivative information than the adaptive optimizers; it only has access to the local
gradient. Also, despite only being trained using 16 iterations, the iterative inference remains stable
for hundreds of iterations. We also compared the optimization techniques on the basis of wall clock
time: figure 9 reproduces the results from figure 6. We observe that, despite requiring more time
per inference iteration, the iterative inference model still outperforms the conventional optimization
techniques.

19

	Introduction
	Background
	Latent Variable Models & Variational Inference
	Variational Expectation Maximization (EM)
	Inference Models

	Iterative Inference Models
	Inference Models are Optimization Models
	Iterative Inference Models

	Iterative Inference in Latent Gaussian Models
	Approximating the Approximate Posterior Gradients
	Relationship to Conventional Variational Auto-Encoders
	Extension: Inference in Hierarchical Latent Variable Models

	Experiments
	Visualizing Approximate Inference Optimization
	Additional Latent Samples & Inference Iterations
	Comparison with Standard Inference Models & Variational EM

	Conclusion
	Approximate Posterior Gradients for Latent Gaussian Models
	Model & Objective
	Gradient of the Log-Prior
	Gradient of the Log-Approximate Posterior
	Gradient of the Log-Conditional Likelihood
	Summary
	Approximate Posterior Gradients in Hierarchical Models

	Implementing Iterative Inference Models
	Input Form
	Output Form
	Model Form

	Experiment Details
	Two-Dimensional Latent Gaussian Models
	Reconstructions Over Inference Iterations
	Additional Latent Samples
	Additional Inference Iterations
	Comparison with Standard Inference Models
	MNIST
	CIFAR-10

	Comparison with Variational EM

