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Abstract

Inference models, which replace an optimization-based inference procedure with
a learned model, have been fundamental in advancing Bayesian deep learning,
the most notable example being variational auto-encoders (VAEs). We propose
iterative inference models, which learn how to optimize a variational lower bound
through repeatedly encoding gradients. Our approach generalizes VAEs under
certain conditions, and viewing VAEs in the context of iterative inference provides
further insight into several recent empirical findings. We demonstrate the infer-
ence optimization capabilities of iterative inference models and show that they
outperform standard inference models on typical benchmark data sets.

1 Introduction

Generative models present the possibility of learning structure from data in unsupervised or semi-
supervised settings, thereby facilitating more flexible systems to learn and perform tasks in computer
vision, robotics, and other application domains with limited human involvement. Latent variable
models, a class of generative models, are particularly well-suited to learning hidden structure. They
frame the process of data generation as a mapping from a set of latent variables underlying the
data. When this mapping is parameterized by a deep neural network, the model can learn complex,
non-linear relationships, such as object identities [1] and dynamics [2, 3]. However, performing
exact posterior inference in these models is computationally intractable, necessitating the use of
approximate inference methods.

Variational inference [4, 5] is a scalable approximate inference method, transforming inference
into a non-convex optimization problem. Using a set of approximate posterior distributions, e.g.
Gaussians, variational inference attempts to find the distribution that most closely matches the
true posterior. This matching is accomplished by maximizing a lower bound on the marginal log-
likelihood, or model evidence, which can also be used to learn the model parameters. The ensuing
expectation-maximization procedure alternates between optimizing the approximate posteriors and
model parameters [6, 7]. Amortized inference [8] avoids exactly computing optimized approximate
posterior distributions for each data example, instead learning a separate inference model to perform
this task. Taking the data example as input, this model outputs an estimate of the corresponding
approximate posterior. When the generative and inference models are parameterized with neural
networks, the resulting set-up is referred to as a variational auto-encoder (VAE) [9, 10].

We introduce a new class of inference models, referred to as iterative inference models, inspired
by recent work in learning to learn [11]. Rather than directly mapping the data to the approximate
posterior, these models learn how to iteratively estimate the approximate posterior by repeatedly
encoding the corresponding gradients, i.e. learning to infer. With inference computation distributed
over multiple iterations, we conjecture that this model set-up should provide improved inference
estimates over standard inference models given sufficient model capacity. Our work is presented
as follows: Section 2 contains background on latent variable models, variational inference, and
inference models; Section 3 motivates and introduces iterative inference models; Section 4 presents
this approach for latent Gaussian models, showing that a particular form of iterative inference models
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reduces to standard inference models under mild assumptions; Section 5 contains empirical results;
and Section 6 concludes our work.

2 Background

2.1 Latent Variable Models & Variational Inference

Latent variable models are generative probabilistic models that use local (per data example) la-
tent variables,z, to model observations,x, using global (across data examples) parameters,� . A
model is de�ned by the joint distributionp� (x ; z) = p� (x jz)p� (z), which is composed of the con-
ditional likelihood and the prior. Learning the model parameters and inferring the posteriorp(zjx)
are intractable for all but the simplest models, as they require evaluating the marginal likelihood,
p� (x) =

R
p� (x ; z)dz, which involves integrating the model overz. For this reason, we often turn to

approximate inference methods.

Variational inference reformulates this intractable integration as an optimization problem by introduc-
ing an approximate posterior1 q(zjx), typically chosen from some tractable family of distributions,
and minimizing the KL-divergence from the true posterior,DKL (q(zjx)jjp(zjx)) . This quantity
cannot be minimized directly, as it contains the true posterior. Instead, the KL-divergence can be
decomposed into

DKL (q(zjx)jjp(zjx)) = log p� (x) � L ; (1)

whereL is the evidence lower bound (ELBO), which is de�ned as:

L � Ez� q(zjx ) [logp� (x ; z) � logq(zjx)] (2)

= Ez� q(zjx ) [logp� (x jz)] � DKL (q(zjx)jjp� (z)) : (3)

Brie�y, the �rst term in eq. 3 can be considered as a reconstruction term, as it expresses how well
the output �ts the data example. The second term can be considered as a regularization term, as
it quanti�es the dissimilarity between the latent representation and the prior. Becauselogp� (x)
is not a function ofq(zjx), in eq. 1 we can minimizeDKL (q(zjx)jjp(zjx)) , thereby performing
approximateinference, by maximizingL w.r.t. q(zjx). Likewise, becauseDKL (q(zjx)jjp(zjx)) is
non-negative,L is a lower bound onlogp� (x), meaning that if we have inferred an optimalq(zjx),
learningcorresponds to maximizingL w.r.t. � .

2.2 Variational Expectation Maximization (EM)

The optimization procedures involved in inference and learning, when implemented using conven-
tional gradient ascent techniques, are respectively the expectation and maximization steps of the varia-
tional EM algorithm [6], which alternate until convergence. Whenq(zjx) takes a parametric form, the
expectation step for data examplex ( i ) involves �nding a set of distribution parameters,� ( i ) , that are
optimal. With a factorized Gaussian density over continuous variables, i.e.� ( i ) = f � ( i )

q ; � 2( i )
q g and

q(z( i ) jx ( i ) ) = N (z( i ) ; � ( i )
q ; diag � 2( i )

q ), this entails repeatedly estimating the stochastic gradients
r � ( i ) L to optimizeL w.r.t. � ( i ) . This direct optimization procedure, which is repeated for each
example, is not only computationally costly for expressive generative models and large data sets, but
also sensitive to step sizes and initial conditions.

2.3 Inference Models

Amortized inference [8] replaces the optimization of each set of local approximate posterior parame-
ters,� ( i ) , with the optimization of a set of global parameters,� , contained within an inference model.
Taking x ( i ) as input, this model directly outputs estimates of� ( i ) . Sharing the inference model
across data examples allows for an ef�cient algorithm, in which� and� can be updated jointly. The
canonical example, the variational auto-encoder (VAE) [9, 10], employs the reparameterization trick
to propagate stochastic gradients from the generative model to the inference model, both of which
are parameterized by neural networks. The formulation has an intuitive interpretation: the inference

1We useq(zjx ) to denote that the approximate posterior is conditioned on a data example (i.e. local), however
this need not be through a direct functional dependence.
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Figure 1: Optimization surface ofL (in nats) for a 2-D latent Gaussian model and a particular MNIST
data example. Shown on the plot are the MAP (optimal estimate), the output of a standard inference
model (VAE), and an expectation step trajectory of variational EM using stochastic gradient ascent.
The plot on the right shows the estimates of each inference scheme near the optimum. The expectation
step arrives at a better �nal inference estimate than the standard inference model.

modelencodesx into q(zjx), and the generative modeldecodessamples fromq(zjx) into p(x jz).
Throughout the rest of this paper, we refer to inference models of this form asstandard inference
models.

3 Iterative Inference Models

In Section 3.2, we introduce our contribution, iterative inference models. We �rst motivate our
approach in Section 3.1 by interpreting standard inference models in VAEs as optimization models,
i.e. models that learn to perform optimization. Using insights from other optimization models, this
interpretation extends and improves upon standard inference models.

3.1 Inference Models are Optimization Models

As described in Section 2.1, variational inference transforms inference into the maximization ofL w.r.t.
the parameters ofq(zjx), constituting the expectation step of the variational EM algorithm. In general,
this is a non-convex optimization problem, making it somewhat surprising that an inference model can
learn to output reasonable estimates ofq(zjx) across data examples. Of course, directly comparing
inference schemes is complicated by the fact that generative models adapt to accommodate their
approximate posteriors. Nevertheless, inference models attempt to replace traditional optimization
techniques with a learned mapping fromx to q(zjx).

We demonstrate this point in Figure 1 by visualizing the optimization surface ofL de�ned by a trained
2-D latent Gaussian model and a particular data example, in this case, a binarized MNIST digit. To
visualize the surface, we use a 2-D point estimate as the approximate posterior,q(zjx) = � (z = � q),
where� q = ( � 1; � 2) 2 R2 and� is the Dirac delta function. See Appendix C.1 for further details.
Shown on the plot are the MAP estimate, the estimate from a trained inference model, and an
expectation step trajectory using stochastic gradient ascent on� q. The expectation step arrives at
a better �nal estimate, but it requires many iterations and is dependent on the step size and initial
estimate. The inference model outputs a near-optimal estimate in one forward pass without hand
tuning (other than the architecture), but it is restricted to this single estimate.

This example illustrates how inference models differ from conventional optimization techniques.
Despite having no convergence guarantees on inference optimization, inference models have been
shown to work well empirically. However, by learning a direct mapping fromx to q(zjx), standard
inference models are restricted to only single-step estimation procedures. This restriction may
result in worse inference estimates, thereby limiting the quality of the accompanying generative
model. To improve upon this paradigm, we take inspiration from the area of learning to learn, where
Andrychowicz et al. [11] showed that anoptimizermodel, instantiated as a recurrent neural network,
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(a) Variational EM (b) Standard Inference Model (c) Iterative Inference Model

Figure 2: Plate notation for a latent variable model (solid lines) with each inference scheme (dashed
lines). � refers to the generative model (decoder) parameters.r � L denotes the gradients of the
ELBO w.r.t. the distribution parameters,� , of the approximate posterior,q(zjx). Iterative inference
models learn to perform approximate inference optimization by using these gradients and a set of
inference model (encoder) parameters,� .

can learn to optimize the parameters of anoptimizeemodel, another neural network, for various
tasks. The optimizer model receives the optimizee's parameter gradients and outputs updates to
these parameters to improve the optimizee's loss. Because the computational graph is differentiable,
the optimizer's parameters can then be learned. Optimization models can learn to adaptively adjust
update step sizes, potentially speeding up and improving optimization.

While Andrychowicz et al. focus primarily on parameter optimization (i.e. learning), an analogous
approach could be applied to inference optimization in latent variable models. We refer to this class
of optimization models asiterative inference models, as they are inference models that iteratively
update their approximate posterior estimates. Our work differs from that of Andrychowicz et al. in
that variational inference is a qualitatively different optimization problem, we utilize non-recurrent
optimization models, and we provide an alternative model formulation thatapproximatesgradient
steps (see Section 4.1). We formalize our approach in the following section.

3.2 Iterative Inference Models

We present iterative inference models starting from the context of standard inference models. For a
standard inference modelf with parameters� , the estimate of the approximate posterior distribution
parameters� ( i ) for data examplex ( i ) is of the form:

� ( i ) = f (x ( i ) ; � ): (4)

We propose to instead use an iterative inference model, also denoted asf with parameters� . With
L ( i )

t � L (x ( i ) ; � ( i )
t ; � ) as the ELBO for data examplex ( i ) at inference iterationt, the model uses the

approximate posterior gradients, denotedr � L ( i )
t , to output updated estimates of� ( i ) :

� ( i )
t +1 = f t (r � L ( i )

t ; � ( i )
t ; � ); (5)

where� ( i )
t is the estimate of� ( i ) at inference iterationt. We usef t to highlight that the form off

at iterationt may depend on hidden states within the iterative inference model, such as those found
within recurrent neural networks. See Figure 2 for a schematic comparison of iterative inference
models with variational EM and standard inference models. As with standard inference models,
the parameters of an iterative inference model can be updated using stochastic estimates ofr � L ,
obtained through the reparameterization trick or other methods. Model parameter updating is typically
performed using standard optimization techniques. Note that eq. 5 is in a general form and contains,
as a special case, the residual updating scheme used in [11].

4 Iterative Inference in Latent Gaussian Models

We now describe an example of iterative inference models for latent Gaussian generative mod-
els, deriving the gradients to understand the source of the approximate posterior updates. Latent
Gaussian models are latent variable models with Gaussian prior distributions over latent variables:
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p(z) = N (z; � p; diag � 2
p). This class of models is often used in VAEs and is a common choice

for representing continuous-valued latent variables. While the approximate posterior can be any
probability density, it is typically also chosen as Gaussian:q(zjx) = N (z; � q; diag � 2

q). With this

choice,� ( i ) corresponds tof � ( i )
q ; � 2( i )

q g for examplex ( i ) . Dropping the superscript(i ) to simplify
notation, we can express eq. 5 for this model as:

� q;t +1 = f � q
t (r � q L t ; � q;t ; � ); (6)

� 2
q;t +1 = f

� 2
q

t (r � 2
q
L t ; � 2

q;t ; � ); (7)

wheref � q
t andf

� 2
q

t are the iterative inference models for updating� q and� 2
q respectively. For

continuous observations, we can use a Gaussian output density:p(x jz) = N (x; � x ; diag � 2
x ). Here,

� x = � x (z) is a non-linear function ofz, and� 2
x is a global parameter, a common assumption in

these models. The approximate posterior parameter gradients for this model are (see Appendix A):

r � q L = EN (� ;0;I )

�
@� x

@� q

| x � � x

� 2
x

�
� q + � q � � � � p

� 2
p

�
(8)

r � 2
q
L = EN (� ;0;I )

�
@� x

@� 2
q

| x � � x

� 2
x

�
�

diag
�

2� q

� | � q + � q � � � � p

� 2
p

�
�

1
2� 2

q
; (9)

where� � N (0; I ) is the auxiliary noise variable from the reparameterization trick,� denotes
element-wise multiplication, and all division is performed element-wise. In Appendix A, we also
derive the corresponding gradients for a Bernoulli output distribution, which take a similar form.
Although we only derive gradients for these two output distributions, note that iterative inference
models can be used withanydistribution form. We now brie�y discuss the terms in eqs. 8 and 9.
Re-expressing the reparameterized latent variable asz = � q + � q � � , the gradients have two shared
terms,(x � � x )=� 2

x and(z � � p)=� 2
p , the precision-weighted errors at the observed (“bottom-up")

and latent (“top-down") levels respectively. The terms@� x
@� q

and @� x
@� 2

q
are the Jacobian matrices of� x

w.r.t. the approximate posterior parameters, which effectivelyinvert the output model. Understanding
the signi�cance of each term, in the following section we provide an alternative formulation of
iterative inference models for latent Gaussian generative models.

4.1 Approximating the Approximate Posterior Gradients

The approximate posterior gradients are inherently stochastic, arising from the fact that evaluating
L involves approximating expectations (eq. 2) using Monte Carlo samples ofz � q(zjx). As these
estimates always contain some degree of noise, a closeapproximationto these gradients should also
suf�ce for updating the approximate posterior parameters. The motivations for this are two-fold: (1)
approximate gradients may be easier to compute, especially in an online setting, and (2) by encoding
more general terms, the inference model may be able to approximate higher-order approximate
posterior derivatives, allowing for faster convergence. We now provide an alternative formulation of
iterative inference models for latent Gaussian models thatapproximatesgradient information.

With the exception of@� x
@� q

and @� x
@� 2

q
, all terms in eqs. 8 and 9 can be easily computed usingx and the

distribution parameters ofp(x jz), p(z), andq(zjx). Likewise, higher-order approximate posterior
derivatives consist of these common terms as well as higher-order derivatives of the output model.
As the output model derivatives are themselvesfunctions, by encoding only the common terms, we
can of�oad these (approximate) derivative calculations onto the iterative inference model. Again
dropping the superscript(i ), one possible set-up is formulated as follows:

� q;t +1 = f � q
t (" x ;t ; " z;t ; � q;t ; � ); (10)

� 2
q;t +1 = f

� 2
q

t (" x ;t ; " z;t ; � 2
q;t ; � ); (11)

where, in the case of a Gaussian output density, the stochastic error terms are de�ned as

" x ;t � E� t [(x � � t; x )=� 2
x ]; " z;t � E� t [(� q;t + � q;t � � t � � p)=� 2

p ]:
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This encoding scheme resembles the approach taken in DRAW [12], where reconstruction errors,
x � � t; x , are iteratively encoded. However, DRAW and later variants [13] do not explicitly account
for latent errors," z;t , or approximate posterior estimates. If possible, these terms must instead
be implicitly handled by the inference model's hidden states. In Section 5.2, we demonstrate that
iterative inference models of this form do indeed work empirically.

4.2 Relationship to Conventional Variational Auto-Encoders

Under a certain set of assumptions, single-iteration iterative inference models of the derivative
approximating form proposed in Section 4.1 are equivalent to standard inference models, as used in
conventional VAEs. Speci�cally, assuming:

1. the initial approximate posterior estimate is a global constant:N (z; � q;0; diag � 2
q;0),

2. the prior is a global constant:N (z; � p; diag � 2
p),

3. we are in the limit of in�nite samples of the initial auxiliary variable� 0,

then the initial approximate posterior estimate (� q;0; � 2
q;0) and initial latent error (" z;0) are constants

and the initial observation error (" x ;0) is a constant af�ne transformation of the observation (x).
When the inference model is a neural network, then encodingx or an af�ne transformation ofx is
equivalent (assuming the inputs are properly normalized). Therefore, eqs. 10 and 11 simplify to
that of a standard inference model, eq. 4. From this perspective, standard inference models can be
interpreted as single-step optimization models that learn to approximate derivatives at a single latent
point. In the following section, we consider the case in which the second assumption is violated;
iterative inference models naturally handle this case, whereas standard inference models do not.

4.3 Extension: Inference in Hierarchical Latent Variable Models

Hierarchical latent variable models contain higher level latent variables that provideempirical priors
on lower level variables;p� (z) is thus observation-dependent (see Figure 7 in Appendix A.6). The
approximate posterior gradients for an intermediate level in a hierarchical latent Gaussian model
(see Appendix A.6) take a similar form as eqs. 8 and 9, comprising bottom-up errors from lower
variables and top-down errors from higher variables. Iterative inference models encode both of these
errors, either directly or through the gradient. However, standard inference models, which mapx and
lower latent variables to each level of latent variables, can only approximate bottom-up information.
Lacking top-down prior information, these models must either use a less expressive prior or output
poor approximate posterior estimates. Sønderby et al. [14] identi�ed this phenomenon, proposing a
“top-down inference" technique. Iterative inference models formalize and extend this technique.

5 Experiments

We performed experiments using latent Gaussian models trained on MNIST, Omniglot [15], Street
View House Numbers [16], and CIFAR-10 [17]. MNIST and Omniglot were dynamically binarized
and modeled with Bernoulli output distributions, and Street View House Numbers and CIFAR-10
were modeled with Gaussian output distributions, using the procedure from [13]. All experiments
presented here use fully-connected neural networks. Additional experiment details, including model
architectures and optimizers, can be found in Appendix C. Source code will be released online.

5.1 Visualizing Approximate Inference Optimization

To visualize the ability of iterative inference models to optimize the approximate posterior, we tested
these models in the simpli�ed setting of a 2D latent Gaussian model, trained on MNIST, with a point
estimate approximate posterior. The generative model architecture and approximate posterior form
are identical to those used in Section 3.1 (see Appendix C.1). Here we show a result from encodingx
andr � q L through a feedforward neural network. In Figure 3, we visualize an optimization trajectory
taken by this model for a particular test example. Despite lacking convergence guarantees, the model
learns to adaptively adjust inference update step sizes to navigate the optimization surface, arriving
and remaining at a near-optimal approximate posterior estimate for this example.
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