
Approximating the Predictive Distribution via
Adversarially-Trained Hypernetworks

Christian Henning ∗, †

henningc@ethz.ch
Johannes von Oswald ∗, †
oswald@ini.ethz.ch

João Sacramento †
sacramento@ini.ethz.ch

Simone Carlo Surace ‡
surace@ini.uzh.ch

Jean-Pascal Pfister †, ‡
jpfister@ini.uzh.ch

Benjamin F. Grewe †
bgrewe@ethz.ch

Abstract

Being able to model uncertainty is a vital property for any intelligent agent. In an
environment in which the domain of input stimuli is fully controlled neglecting
uncertainty may work, but this usually does not hold true for any real-world
scenario. This highlights the necessity for learning algorithms that robustly detect
noisy and out-of-distribution examples. Here we propose a novel approach for
uncertainty estimation based on adversarially trained hypernetworks. We define a
weight posterior to uniformly allow weight realizations of a neural network that
meet a chosen fidelity constraint. This setting gives rise to a posterior predictive
distribution that allows inference on unseen data samples. In this work, we train
a combination of hypernetwork and main network via the GAN framework by
sampling from this posterior predictive distribution. Due to the indirect training of
the hypernetwork our method does not suffer from complicated loss formulations
over weight configurations. We report empirical results that show that our method
is able to capture uncertainty over outputs and exhibits performance that is on
par with previous work. Furthermore, the use of hypernetworks allows producing
arbitrarily complex, multi-modal weight posteriors.

1 Introduction

Deep neural networks are flexible models that have succeeded in a great number of challenging
problems [23]. However, in their standard form they do not provide any means of quantifying
uncertainty. For example, when classifying unseen data far from training examples, deep networks
often overconfidently attribute high probability to one of the classes, even though in reality they
should express high uncertainty in their output. This can be devastating in situations in which a neural
network bares responsibilities that might influence the integrity of valuable machinery/property or
even the safety of human lives. In this work, we focus on weight uncertainty, although modelling
other sources of uncertainty, for instance, from noisy inputs can be advantageous as well [15].

During learning, weight uncertainty naturally arises due to the finite nature of the available data. As a
result, multiple model configurations are usually consistent with any given set of examples. One way
to handle this source of uncertainty is to view learning as a problem of Bayesian inference [25]. In
feedforward Bayesian neural networks (BNNs) the network output y = f(x,W ), parameterized by
weights W ∈ RK , is given a statistical interpretation that is captured by the likelihood p(y | x,W ).
Considering a probabilistic network f(x,W ), the likelihood p(y | x,W ) is a categorical distribution
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in classification tasks and typically modelled via a softmax function, while for regression tasks the
simplest choice is to assume that Gaussian noise corrupts the output. After observing a set of data
points D = {(xn, yn)}Nn=1, the prior parameter distribution p(W ), which incorporates all initial
beliefs over plausible network configurations, can then be updated through Bayes’ theorem. This
yields the posterior parameter distribution p(W | D) = p(Y |X,W )p(W )

p(Y |X) .

For new unseen data points, predictions can then be made via the posterior predictive distribution by
integrating over the posterior p(W | D)

p(y | x,D) =

∫
W

p(W | D) p(y | x,W ) dW . (1)

However, the analytical computation of p(W | D) is intractable for neural networks, so in practice,
an approximate inference scheme must be used. One possibility is to use Laplace’s method and to
approximate the posterior distribution by a multivariate Gaussian with the precision set to the Hessian
of the log-likelihood [25]. Although computing the Hessian is not always feasible, this approximation
is simple and works well in some cases. Alternatively, Markov chain Monte Carlo methods can be
used to obtain samples from the posterior distribution [3, 30, 35]. However, these methods can be
time-consuming and they often suffer from convergence issues. Another possibility is to consider
variational inference (VI) [2, 4, 9, 12, 17]. In VI, an auxiliary distribution q(W ) is constructed to
match the posterior, as measured by the Kullback-Leibler divergence. However, due to feasibility
reasons, the expressiveness of the approximate posterior q(W ) or the actual posterior p(W |D) (due
to a poor choice of prior) is often severely deteriorated.

Note, the aforementioned methods are working with p(W | D) as a means to approach inference
via eq. (1). We attempt to bypass the problem of approximating or sampling from the posterior
parameter distribution p(W | D) by choosing it to model a class of high-fidelity weight realizations.
These are parameter configurations of f(x,W ) that meet a certain (high-fidelity) performance on
D (e.g., accuracy in classification tasks). This fully determines the posterior predictive distribution
p(y | x,D) given a certain choice of main network f(x,W ). Our goal is to approximate p(y | x,D)
via q(y | x) as described in section 3. The approximation is learned via an adversarial scheme that
contrasts samples from p(y | x,D) with those retrieved from our combination of main network and
hypernetwork. Empirical results are reported in section 4.

2 Related Work

Generative Adversarial Networks. Generative Adversarial Networks (GANs) [7] perform
distribution-matching using two neural networks, a generator and a discriminator. The genera-
tor is a generative model that translates latent embeddings into data samples such as images. Thus, it
defines an implicit distribution (i.e., we can use it to easily draw samples from an unknown distribution
and compute gradients with respect to those samples). The discriminator judges the likelihood of
these samples compared to a reference distribution. Both networks are trained in a two-player game,
in which the discriminator tries to discriminate real (from the reference distribution) from fake
(produced by the generator) samples and the generator tries to fool the discriminator. The optimum
of this game is shown to minimize some divergence between these distributions, but the exact form
of divergence (or even distance) depends on the loss function [1, 31]. In our work, we will use this
framework to find an approximation of the posterior predictive distribution.

Uncertainty Estimation. A promising direction to capture parameter uncertainty in neural net-
works is guided by variational inference, that allows learning an approximate posterior. This can
be achieved by maximizing the so-called evidence lower bound (ELBO), which consists of a data
log-likelihood term and a prior-matching term −KL(q(W ) || p(W )). This last term is usually hard to
optimize, thus necessitating simplifications by restricting the richness of the family of approximations
q(W ) or by severely restricting the actual posterior p(W |D) due to a poor choice of prior. This is
evident in many of the related studies on hypernetworks.

A hypernetwork hθ(z) is a neural network with weights θ that maps a latent input z ∼ pz(z) into the
weightsW of a main network f(x,W ). Hypernetworks were originally introduced by Ha et al. [10] to
reduce the number of trainable weights while keeping a rich architecture. They were repurposed and
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reintroduced multiple times in different forms to approximate the weight posterior while employing
different strategies to estimate the so-called prior-matching term [14, 20, 24, 32, 33]. However, all
of these methods have drawbacks, in that either scalability is limited or the expressiveness in terms
of the posteriors that can be modelled is reduced. Louizos and Welling [24] are using Normalizing
Flows to estimate the uncertainty of a multiplicative influence on the means of a Gaussian weight
posterior. Normalizing Flows [33, 18] are invertible neural networks, that make use of the change of
variables formula to compute the density of network outputs given the probability density function
(pdf) of their inputs. Such networks need to be carefully designed to allow an efficient computation
of the determinant of its Jacobian. As such, Normalizing Flows allow a Monte Carlo estimate of the
prior-matching term as the pdf of the network outputs can be computed, which makes VI feasible.
This method is also utilized by Krueger et al. [20] in a similar way by training a hypernetwork that
outputs a single scaling factor per unit for all incoming weights. Pawlowski et al. [32] applied VI
to a hypernetwork that was not restricted in learning an arbitrary complex weight posterior. They
use an approximation of the KL-divergence to optimize the prior-matching term, which they apply
to all weights independently. An interesting method has been recently proposed by Karaletsos et al.
[14] by shifting the problem of performing VI to the input space of the hypernetwork. The presented
hypernetwork receives a combination of two unit-specific Meta Embeddings to generate the weight
connecting these units. These embeddings are sampled from a learned data-dependent posterior over
the latent space which they termed MetaPrior.

VI has also been applied directly to the weights of a neural network (without the need of an additional
hypernetwork), for instance, as employed by Bayes by Backprop (BbB) [2]. In BbB each weight
is replaced by a Gaussian distribution whose mean and variance are learned via VI using unbiased
Monte-Carlo gradients. One approach that only requires a minimal set of assumptions (i.e., choosing
a prior) to learn arbitrary complex posteriors via VI is adversarial variational Bayes [28]. This
method relies on Generative Adversarial Networks (GANs) to estimate the density ratio appearing
within the prior-matching term.

Also using GANs, another group (Wang et al. [34]) trained a hypernetwork to directly match the
weight posterior p(W | D). Samples from the weight posterior are acquired via approximate MCMC
samples (using stochastic gradient Langevin dynamics; SGLD). The advantage of this method is that
the approximate posterior is ready to use during inference to retrieve an estimate of eq. (1) without
the need of storing samples from the true posterior.

A scalable method for uncertainty estimation was presented in Lakshminarayanan et al. [21]. They
train an ensemble of networks by using different random weight initializations and random shuffling
of the training data. To smooth the predictive distribution they propose to train by incorporating
adversarial examples.

The method proposed by Korattikara et al. [19] is similar to ours in that it aims to estimate the
posterior predictive distribution p(y | x,D). However, Korattikara et al. [19] use a single neural
network and try to find W such that p(y | x,W ) ≈ p(y | x,D) and use SGLD to find a teacher
network (or a set of teacher networks) to retrieve samples from p(y | x,D).

3 Method

The hypernetwork hθ(z) maps samples z ∼ pz(z) from a chosen latent distribution pz(z) into weight
realizations W ∼ q(W ). Here, q(W ) denotes the unknown but (in the non-parametric limit) arbitrary
density of pz(z) transformed through hθ(z). The goal of our new approach is to find a transformation
hθ(z) of the latent distribution pz(z) into an arbitrarily complex distribution q(W ), such that the
posterior predictive distribution evoked by q(W ) matches the one generated by a “high performance”
weight posterior given a choice of main network f(x,W ). To train the hypernetwork, we use an
additional discriminator network dψ with weights ψ.

In the most straightforward scenario, one could utilize the distribution matching capabilities of GANs
by using hθ(z) as generator and a network d̂ψ′(W ) to discriminate whether its input comes from the
hypernet or the real posterior p(W |D). This is similar to what is proposed by Wang et al. [34], but
the scalability of such an approach might be limited as the dimensionality of W rapidly increases
and a huge amount of samples from p(W |D) would be required to capture the actual shape of this
distribution with the hypernetwork.
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Figure 1: This figure illustrates our Adversarial Hypernetwork. The weights W of the main network
f are generated by an auxiliary network hθ. The discriminator dψ is used for training to ensure that
hθ generates weights that are appropriate for a desired output inference scheme p(y | x,D).

Thus, we choose an indirect approach, in which the discriminator dψ observes inputs x and outputs 4

ỹ from the main network, where ỹ is sampled from a posterior predictive distribution p(ỹ | x,D).
Our setup is sketched in Figure 1.

Note, that in general for two joint distributions p(x, y) and q(x, y) with a common marginal p(x) it
holds that

p(x, y) = q(x, y)⇐⇒ p(y | x) = q(y | x) iff p(x) > 0 . (2)
Hence, we are considering the case of matching conditionals in the following even though we present
pairs sampled from the joint distribution to the discriminator .

Fake samples are implicitly defined through the combination of hyper- and main network, i.e., by
drawing an x from the real data distribution pdata(x) and a corresponding ỹ from

q(ỹ | x) =

∫
W

p(ỹ | x,W ) q(W ) dW =

∫
z

∫
W

p(ỹ | x,W ) q(W | z)︸ ︷︷ ︸
δ
(
hθ(z)−W

) pz(z) dW dz , (3)

where δ(·) denotes a Dirac-delta function since hθ(z) is deterministic.

There are multiple options to retrieve samples from a desired posterior predictive distribution p(ỹ |
x,W ). One possibility is to generate samples from a Bayesian parameter posterior p(W | D) (e.g.,
via SGLD as in [19, 34]). We choose to explore an alternative by defining a data-dependent parameter
distribution p̃(W | D) .

We first introduce a fidelity function τf (W,D) that measures the performance of the main network f

τf (W,D) =
1

N

N∑
n=1

τs
(
yn, f(xn,W )

)
, (4)

where τs(·, ·) denotes a per sample fidelity. For example, in a classification task5, a natural choice for
τf would be the mean accuracy over the dataset, i.e., τs(y, ỹ) = 1y=argmax(ỹ), where the function
1β is 1 only if the Boolean expression β evaluates to true and 0 otherwise. Using τf , we introduce
the distribution of high fidelity solutions p̃(W | D):

p̃(W | D) =
1

ZW
pu(W ) Θ [τf (W,D)− τ∗] , (5)

4Note, we distinguish in our notation between the outputs ỹ of the deterministic main network f(x,W ) and
the labels y as observed in the datasetD. This distinction becomes important if we are considering a probabilistic
main network in which case ỹ might be the parameters of a distributions from which a label y can be sampled.

5Assuming the output of the main network f(x,W ) resembles class probabilities.
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where Θ[·] denotes the Heaviside step function, pu(W ) is a uniform prior over the weights and ZW =∫
dW pu(W ) Θ [τf (W,D)− τ∗] ensures that the distribution is properly normalized. Therefore,

we need to make sure that ZW is non-zero and finite. This is either naturally the case given the
performance criterion τf (W,D) ≥ τ∗ or enforced by restricting W to a finite but arbitrary domain.
In eq. (5) we constrain the solution space by imposing a high fidelity criterion τ∗6.

In a regression task, in which we want to ensure a mean-squared error smaller than ε, an obvious
choice for the per sample fidelity is τs(y, ỹ) = −‖y − ỹ‖22, where the fidelity criterion is set to
τ∗ = −ε .

From p̃(W | D) we construct via marginalization the target predictive distribution:

p̃(ỹ | x,D) =

∫
W

p(ỹ | x,W ) p̃(W | D) dW . (6)

As in eq. (3), the likelihood p(ỹ | x,W ) is evaluated by using the main network f . We use p̃(ỹ | x,D)
to create a dataset of real samples as described in section 3.1 to train the hypernetwork via dψ(x, ỹ).

We utilize the GAN framework to find a configuration of the hypernetwork weights θ, such that
p̃(ỹ | x,D) = q(ỹ | x)7. Note, we do not need to compute the densities p̃(ỹ | x,D), q(ỹ | x) nor
pdata(x) as long as we can sample from these distributions. Algorithm 1 summarizes our approach.

Algorithm 1 Training of an Adversarial Hypernetwork

1: nd ← # iterations to train discriminator before updating the generator
2: G(·), D(·, ·)← generator and discriminator loss
3: m← mini-batch size
4: while not convergered do

// Train discriminator to optimality.
5: for t← 1 to nd do
6: Sample z(1), . . . , z(m) from pz(z)
7: Sample x(1), . . . , x(m) from pdata(x)

8: Sample ỹ(i)r from p̃(ỹ | x(i)) for i ∈ {1, . . . ,m}
9: Sample ỹ(i)f from p̃

(
ỹ | x(i), hφ(z(i))

)
for i ∈ {1, . . . ,m}

// Compute discriminator gradient gψ and perform weight update.
10: gψ ← 1

m

∑m
k=1∇D(dψ(x(k), ỹ

(k)
f ), dψ(x(k), ỹ

(k)
r ))

11: ψ ← Adam-Optimizer(ψ, gψ)
// Update the generator.

12: Sample z(1), . . . , z(m) from pz(z)
13: Sample x(1), . . . , x(m) from pdata(x)

14: Sample ỹ(i)f from p̃
(
ỹ | x(i), hφ(z(i))

)
for i ∈ {1, . . . ,m}

// Compute generator gradient gθ and perform weight update.
15: gθ ← 1

m

∑m
k=1∇G(dψ(x(k), ỹ

(k)
f ))

16: θ ← Adam-Optimizer(θ, gθ)

3.1 Generating Samples from the Target Predictive Distribution

In this work, we are focusing on using a deterministic main network f(x,W ). In a classification
task, we assume that the output ỹ of f(x,W ) are the parameters π ∈ RC of a categorical distribution
with C classes. Samples from p̃(ỹ | x,D) can be retrieved by training an ensemble of M classifiers
satisfying a given fidelity τ∗: W̃1, . . . , W̃M . These ensemble weights are subsequently used to
generate a training dataset D̃ = {

(
xi, f(xi, W̃j)

)
| j = assign(i) for all (xi, ·) ∈ D}, where the

function "assign" distributes data indices uniformly onto ensembles. Note, the ensemble is only
needed for the generation of the training set. Specifically, an ensemble weight realization W̃j can

6We assume, that the set of admissible weights is not empty, i.e., the chosen main network is expressive
enough to fulfill the τ∗ high fidelity criterion.

7Assuming the hypernetwork as a universal function approximator.
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be deleted once it has been used to generate samples of the predictive distribution. This is in strong
contrast to the ensemble method in Lakshminarayanan et al. [21], for which the ensemble needs to be
kept during inference, causing a storage and runtime overhead.

In a regression task, an unknown function g : X → Y should be learned via observing (possibly
noisy) samples

(
x, y ≈ g(x)

)
∈ D. The output of the main network are samples from the same space

Y that hopefully capture the trend of the training data. A possible way to retrieve a training set D̃ for
our approach is to train an ensemble of main networks that satisfy, for instance, a maximum mean-
squared error. However, we choose a simpler alternative approach, in which we consider the dataset
D as a set of samples that satisfy a desired but implicit (as unknown to us) fidelity on the true data
population defined by g. Hence, we consider D̃ ≈ D, where each sample in (x, y) ∈ D is generated
by a weight realization W̃j from an unknown set of ensemble weights, such that f

(
x, W̃j

)
= y and

τf (W̃j , D) greater or equal some fidelity. This approach of choosing D̃ relies on the assumption that
the main network f is expressive enough to explain the data observed in D. Comparing this heuristic
approach with a D̃ constructed from a trained ensemble is the aim of our future work.

Another interesting direction that can be explored in future work is the use of a probabilistic main
network. For instance, f(x,W ) could output the parameters ỹ of a distribution from which an actual
output y would be sampled via p(y|ỹ). A natural choice for a regression task would be a Gaussian
p(y|ỹ), where y is presented to the discriminator and f(x,W ) is trained using the reparametrization
trick [16]. Such a probabilistic main network is especially interesting once a classification task is
considered. As it is in general not possible to learn a mapping from a continuous to a discrete variable
via backpropagation, a continuous relaxation of the categorical output has to be considered. This
could be the Gumbel-softmax or Concrete distribution that have been simultaneously developed by
Jang et al. [13] and Maddison et al. [26]. Using this method, the output presented to the discriminator
would be prototypical 1-hot encodings. Now, using the same line of thought as applied to a regression
task with a deterministic main network, the heuristic D̃ ≈ D can be explored.

4 Experiments

All of our experiments have been performed using the Least-Squares GAN loss from Mao et al.
[27] to train both, discriminator and hypernetwork. Code by Pawlowski et al. [32] was used for
comparison with other methods.

4.1 Toy Regression

As introduced by Hernández-Lobato and Adams [11], we approximate a cubic function via noisy
observations: g(x, ε) = x3+ε, ε ∼ N (0, 9). This benchmark is intended as a human-comprehensible
sanity check of uncertainty modelling, as it is tested within and outside the domain of the training
data and the output uncertainty in these domains can be visually assessed.

Implementation Details. The training data consists of 20 samples
(
x, g(x, ε)

)
with x ∈ [−4, 4]

and ε ∼ N (0, 9). Thus, the discriminator gets real samples
(
x, g(x, ε)

)
and fake samples(

x, f(x, hθ(z))
)

with z ∼ N (0, I) as input. For this task, all networks consist of fully-connected
layers only. The main network has a single 100-units hidden layer. The hypernetwork has 3 hidden
layers consisting of 16, 32 and 64 units and receives an 8-dimensional latent input z. The discrim-
inator was chosen to have 3 hidden layers with 64, 32 and 16 units. To ensure consistency for all
methods, we always used the same setup for the main network. We train both networks, hypernetwork
hθ(z) and discriminator dψ(x, y), using the Adam optimizer with the PyTorch default parameters.

Results. The results of this experiment are depicted in Figure 2. Compared to other methods, our
approach shows a smooth approximation in areas that have a high density of training samples, nicely
capturing their variance, while the uncertainty drastically increases in a non-linear fashion when
training data points are sparse or absent. Here, our approach accounts for the fact that it hasn’t seen
enough evidence to confidently predict in these areas.
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Figure 2: Comparison of our Adversarial Hypernetwork approach (bottom right) to other state-of-
the-art methods on the toy regression task from section 4.1. Plots show the following methods (from
top left to bottom right): Ensemble [21], MC Dropout [5], MNF [24], BbB [2], BbH [32] and the
Adversarial Hypernetwork (ours).

4.2 MNIST

This experiment is performed on the MNIST dataset [22], which consists of 60.000 training and
10.000 test samples of labeled hand-written digits. To measure uncertainty, we consider two kinds of
out-of-distribution samples: Turning MNIST [6] and notMNIST8. Turning MNIST is a qualitative
experiment in which a single MNIST digit is rotated while its change in the predictive distribution is
measured in terms of entropy. For a quantitative analysis of uncertainty we resort to the widely used
notMNIST benchmark [21, 24, 32], which consists of letters rather than digits. Thus, data that the
model has never observed during training. Therefore, the uncertainty on output predictions on these
samples is ideally very high.

Implementation Details. The main network uses a Convolutional Neural Network architecture
with K = 21.840 weights. It consists of two convolutional layers using max-pooling (with stride 2)
followed by two fully-connected hidden layers of size 320 and 50, respectively. The network uses
ReLUs as non-linearities for all hidden layers and a softmax output. The hypernetwork consists of one
fully-connected hidden layer with 100 units using a ReLU non-linearity. Multiple fully-connected
layers then project to the individual weight tensors of the main network. The discriminator consists
of 2 strided-convolutional and 2 non-strided-convolutional layers with a final fully-connected layer
to process input images x. The input ỹ is send through a fully-connected layer and then added as a
dynamic bias to the output filters of the second convolutional layer. All layers, except the output, are
using LeakyReLU non-linearities. To prevent mode collapse, we allow the discriminator to compare
samples within a mini-batch (that corresponds to one weight draw W ) and computed simple batch
statistics v = 1

m

∑m
i=1 ỹi, where m denotes the batch size. These are concatenated to the input ỹ

before send into the discriminator. We use Spectral Normalization [29] to stabilize GAN training.

The dimensionality of the latent space is 8 with z ∼ N (0, I). As for the toy example we use the
Adam optimizer for the hypernetwork and main network with the learning rate set to 0.00005 and
default beta values.

In order to train our networks, we need to first generate a training dataset D̃ from D as described
in section 3.1. First, a training set with 60.000 and test set with 10.000 data points (x, ỹ) was
constructed with ỹ the output of either 1 of 10 directly trained main networks (using cross-entropy
loss; no hypernetwork) with different random initialization. We uniformly distributed MNIST training
and test images across these networks to produce corresponding ỹ samples. We choose the training
accuracy as fidelity measure with τ∗ corresponding to 95%. Rather than exploring the hyperparameter

8Can be retrieved from http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html.
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Figure 3: Turning MNIST example with an image of the digit 3. Method comparison (a) BbB [2], (b)
MNF [24] and Adversarial Hypernetwork (c). For our method, variance on predictions for examples
far away from the training sample (corresponding to high angle) is high while the confidence is low.

Figure 4: (a) Cumulative density function (CDF) of the entropies evaluated on the parameters of the
predictive distributions observed for notMNIST samples. (b) Evolution of accuracy (bold lines) and
observed uncertainty (dashed lines) with increasing strength of an adversarial attack on the inputs.

τ∗ we decided to explore the cheap option of considering noisy perturbations of 1-hot encodings
to produce a dataset similar to D̃. Therefore, we took all samples (x, y) from the MNIST dataset
and perturbed the 1-hot encodings corresponding to y by Gaussian noise ε ∼ N (0, 0.0075) such that
zero values were positively perturbed and one values negatively. After renormalization we retrieved
a dataset D̃noisy that showed similar performance to D̃. We used D̃noisy for all our experiments. A
thorough investigation on how to generate appropriate datasets D̃ is left for future work to explore.

Results. We successfully trained the main network with our approach on MNIST with an accuracy
of 98.3%. We closely follow Louizos and Welling [24] as standard experiments for measuring the
quality of uncertainty estimation. First, we demonstrate the effectiveness of our method on Turning
MNIST images, Figure 3. The predicted confidence values of a rotated image showing a 3 of different
angles is measured over 100 weight samples for all compared methods. Those softmax outputs
averaged across weight draws are plotted with their variance indicated through error bars. Our method
successfully identifies images far from training data through predictions with low probabilities and
high variance comparable to the results achieved by MNF [24].

We also estimate the entropy of the predictive distributions on notMNIST as in Lakshminarayanan
et al. [21]. The results of this experiment are depicted in Figure 4a. In these experiments, the softmax
outputs of a 100 weight draws are averaged and the entropy of this averaged ensemble categorical
distribution is computed for the first 1000 images from the notMNIST dataset. These entropies are
used to generate the depicted cumulative density plot. Note, that high uncertainty corresponds to high
output entropy, i.e., it is desirable to push the mass as far as possible to the right for out-of-distribution
samples in this CDF plot. Our method successfully identifies this dataset as unknown through
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overall high prediction entropy and clearly performs on par with the state-of-the-art methods on this
uncertainty measure.

We observe a very strong robustness of our method against the fast gradient sign adversarial attack
from Goodfellow et al. [8], which is shown in Figure 4b. This adversarial attack adds a perturbation
vector to the original MNIST images, which is computed as the sign of the gradient of a Cross-
Entropy loss with respect to the inputs applying the ground-truth label. This perturbation will increase
the loss, while its influence is controlled by a scalar ε. The Figure 4b depicts the development of
the test accuracy (as bold lines) with increasing strength of the adversarial attack. Ideally, a drop
in accuracy is accompanied by a rise in entropy of the predictive distribution (dotted lines). The
entropy is normalized by its maximum value. Note, that the methods have different initial entropy
values (at ε = 0), which is most likely influencing the notMNIST experiments (as methods with
a higher baseline entropy may have a higher entropy in general), showing the weakness of the
current benchmarks in this field. Our method retains a high accuracy for moderate values of ε,
which is a possible explanation for the modest increase in entropy. It should be noted that the Deep
Ensembles method [21] is trained using adversarial examples to obtain a smoother approximation of
the predictive distribution.

We emphasize the need for experiments that do take the performance accuracy and the mentioned
baseline entropy on training data into account – for example, poor performance on the task at hand
often leads to high entropy values on in- and out-of-distribution samples, which might result in wrong
interpretations on the quality of uncertainty measurements.

Although we only report results on MNIST with a small architecture, preliminary results indicate the
scalability of our method to larger architectures. Here, we tested the possibility of using a conditional
hypernetwork, that receives learned embeddings as additional input to produce only a portion of the
weights at a time as already suggested in Ha et al. [10].

5 Conclusions

Using two auxiliary networks, we demonstrate a novel training method for neural networks to mimic
a posterior predictive distribution that incorporates uncertainty over the weights by learning from
observed samples. We acknowledge the fact that multiple weight posteriors might result in the same
posterior predictive distribution, which is why we conjecture that the solution space of the employed
hypernetwork has a simpler error landscape and optima are easier to find. Adversarial Hypernetworks
enable fast sampling of weight realizations and allow to perform approximate inference via q̃(ỹ | x)
(see eq. 3), that empirically captures uncertainty over the outputs comparable to other state-of the-art
methods. In this work, we explored the option of matching a predictive distribution defined through
a high-fidelity weight distribution as defined by eq. (5). However, the proposed method is more
general and might be applied to any kind of predictive distribution as long as one can sample from
the underlying weight posterior.
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