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Abstract

We consider the problem of training a machine learning model over a network of
users in a fully decentralized framework. The users take a Bayesian-like approach
via the introduction of a belief over the model parameter space. We propose a
distributed learning algorithm in which users update their belief by aggregate infor-
mation from their one-hop neighbors to learn a model that best fits the observations
over the entire network. In addition, we also obtain sufficient conditions to ensure
that the probability of error is small for every user in the network. Finally, we
discuss approximations required for applying this algorithm for training Neural
Networks.

1 Introduction

Mobile computing devices have seen a rapid increase in their computational power as well as storage
capacity. Aided by this increased computational power and abundance of data, as well as due to
privacy and security concerns, there is a growing trend towards training machine learning models
over networks of such devices using only local training data. The field of Federated learning initiated
in McMahan et al. (2017) and Konečnỳ et al. (2016) considers the problem of learning a centralized
model based on private training data of a large number of users. More specifically, this framework is
characterized by a huge number of decentralized users who are connected to a centralized server. The
different users generate possibly non-iid data and furthermore it is assumed that communications
between the users and the central server incur large costs. McMahan et al. (2017) proposed the
federated optimization algorithm in which the central server randomly selects a fraction of the users
in each round, shares the current global model with them, and then averages the updated models sent
back to the server by the selected users.

In this paper, we also consider the problem of training a machine learning model over a network
of devices which differs from the federated learning framework of McMahan et al. (2017) in the
following ways:

• Fully decentralized model, we do not require the existence of a centralized controller. Instead,
in our setting, users can only communicate with their one-hop neighbors.

• Localized Inputs, the training data available to an individual user is not sufficient to uniquely
identify the underlying model. Thus the users must collaborate with each other to learn the
optimal model.

Our problem formulation does away with the need of having a centralized controller, and instead
aims to collaboratively learn the optimal model by local information exchange.
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Contributions: Our contributions are as follows: 1) we first present a formal description of the fully
decentralized federated learning problem; 2) we then present a distributed learning algorithm and
obtain theoretical bounds on its performance; and 3) we describe the approximations required to
employ this algorithm for training Deep Neural Networks (DNNs) in a decentralized manner.

Notation: We use boldface for vectors and denote the i-th element of vector v by vi. We let [n] denote
{1, 2, . . . , n}, P(A) the set of all probability distributions on a set A, |A| denotes the number of
elements in set A, and DKL(PZ ||P ′Z) the Kullback–Leibler (KL) divergence between two probability
distributions PZ , P ′Z ∈ P(Z).

2 The Model

Consider a group of N individual users. Each user i has access to a dataset Di containing n samples{
(X

(1)
i , Y

(1)
i ), (X

(2)
i , Y

(2)
i ), . . . , (X

(n)
i , Y

(n)
i )

}
. Each X(k)

i ∈ Xi ⊆ X , where Xi denotes the local

input space at user i and X denotes a global input space which satisfies X ⊆ ∪Ni=1Xi. The samples{
X

(1)
i , X

(2)
i , . . . , X

(n)
i

}
are i.i.d generated according to a distribution Pi. Furthermore, the k-th

label Y (k)
i of user i is given by

Y
(k)
i = fθ∗

(
X

(k)
i

)
+ η

(k)
i , (1)

where fθ∗ is a function defined over the input space X , θ∗ denotes a fixed global “true parameter"
belonging to the set Θ which is a compact subset of Rd and η(k)

i denotes independent additive noise
at user i. The global true parameter θ∗ is unknown to the users. We assume that each user knows
its local likelihood functions of the labels {θ ∈ Θ, x ∈ Xi : li (·; θ, x)}, where li (·; θ, x) denotes the
local likelihood function of the label given θ is the true parameter and x in the input. Hence, the
samples in the dataset for each user are conditionally independent and identically distributed (i.i.d)
according to the distribution fi(x, y; θ) = Pi(x)li(y; θ, x) but the observations might be correlated
across the users.

Define Θ̄i = {θ ∈ Θ \ {θ∗}, x ∈ Xi : li(·; θ, x) = li(·; θ∗, x)}. Note that, if the local input space
Xi is such that Θ̄i 6= φ, then θ∗ is not uniquely learnable using the local observations of user i. In
this work, we are interested in the case where Θ̄i 6= φ for some user i, but the true hypothesis θ∗
is globally learnable, i.e, ∩Ni=1Θ̄i = φ. Hence, the users aim to collaboratively learn underlying
parameter θ∗.

Assumption 1. The true parameter θ∗ is globally learnable and hence ∩Ni=1Θ̄i = φ.

Example 1 (Distributed Linear Regression). Suppose d ≥ 2, Θ = [0, 1]d+1 and X = Rd. For
any θ ∈ Θ, x ∈ X , define fθ(x) = θ0 +

∑d
i=1 θixi = 〈θ, [1, xT ]T 〉. Suppose the observation

noise is Gaussian given by η ∼ N(0, α2). For some 0 < m < d, let X1 =

{[
x1

0

]
| x1 ∈ Rm

}
and let X2 =

{[
0
x2

]
| x2 ∈ Rd−m

}
. Consider a simple network of two users (denoted by A

and B), such that user A can make observations corresponding to points in X1 and user B in
X2. For any θ ∈ Θ, define θ0 ∈ [0, 1], θ(1:m) ∈ [0, 1]m and θ(m+1,d) ∈ [0, 1]d−m such that
θ = [θ0, θ

T
(1:m), θ

T
(m+1:d)]

T . Thus, working in the realizable setting with the true parameter being

θ∗, user A can learn the set ΘA =
{
θ ∈ Θ | θ(1:m) = θ∗(1:m)

}
and similarly user B can learn the set

ΘB =
{
θ ∈ Θ | θ(m+1,d) = θ∗(m+1,d)

}
. The goal in the distributed learning framework is to design

an information exchange rule which results in both users eventually learning the true parameter
{θ∗} = ΘA ∩ΘB .

We model the communication network between users via a directed graph with vertex set [N ]. We
define the neighborhood of user i, denoted by N (i), as the set of all users j who have an edge going
to j to i. Furthermore, if user j ∈ N (i), it can send messages to user i. The social interaction of
the users is characterized by a stochastic matrix W . The weight Wij ∈ [0, 1] is strictly positive if
and only if j ∈ N (i) and Wii = 1 −

∑N
j=1Wij . The weight Wij denotes the confidence user i
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has on the information it receives from user j. We make the following assumption that allows the
information gathered at every user to be disseminated throughout the network.

Assumption 2. The network is a strongly connected aperiodic graph. Hence, W is aperiodic and
irreducible.

We discretize the parameter space Θ with M representative points and denote the set of these points
by ΘM . For every user i ∈ [N ], let Θ

(i)
M = argminθ∈ΘM EPi [DKL (li(·; θ∗, Xi)||li(·; θ,Xi))]. Let

Θ∗M := ∩Ni=1Θ
(i)
M . Since θ∗ is the true parameter, we have Θ∗M 6= φ for any M points. At every

instant k each user i maintains a private belief vector ρ(k)
i and a public belief vector b(k)

i , which are
probability distributions on Θ.

Assumption 3. For all users i ∈ [N ] we assume

• The prior beliefs ρ(0)
i (θ) > 0 for all θ ∈ ΘM .

• There exists an α,L > 0 such that α < li(y; θ, x) < L, for all y ∈ Y , θ ∈ Θ and x ∈ Xi.

We say that an algorithm learns θ in a distribution manner if the following holds: for any discretized
parameter space ΘM , for any δ ∈ (0, 1) we have

P(∃ i ∈ [N ] s.t. θ̂(n)
i 6= θ∗M ) ≤ δ,

where θ̂(n)
i denotes the estimate of user i using n samples. Our learning criteria is requires every user

in the network to agree on a parameter that best the observations over the entire network.

3 Distributed Learning Algorithm

We employ the distributed hypothesis testing algorithm considered by Lalitha et al. (2018); Shahram-
pour et al. (2016); Nedić et al. (2015) to cooperatively learn the model over the network. Suppose
each user i starts with an initial private belief vector ρ(0)

i . At each instant k ∈ [n] the following
events happen:

1. Each user i draws an i.i.d sample X(k)
i ∼ Pi and obtains a conditionally i.i.d sample label

Y
(k)
i ∼ Pi

(
X

(k)
i

)
li

(
·; θ∗, X(k)

i

)
.

2. Each user i performs a local Bayesian update on ρ
(k−1)
i to form b

(k)
i using the following

rule. For each θ ∈ ΘM ,

b
(k)
i (θ) =

li

(
Y

(k)
i ; θ,X

(k)
i

)
ρ

(k−1)
i (θ)∑

ψ∈ΘM
li

(
Y

(k)
i ;ψ,X

(k)
i

)
ρ

(k−1)
i (ψ)

. (2)

3. Each user i sends the message b
(k)
i to all users j for which i ∈ N (j). Similarly receives

messages from its neighbors N (i).

4. Each user i updates its private belief of every θ ∈ ΘM , by averaging the log beliefs it
received from its neighbors. For each θ ∈ ΘM ,

ρ
(k)
i (θ) =

exp
(∑N

j=1Wij log b
(k)
j (θ)

)
∑
ψ∈ΘM

exp
(∑N

j=1Wij log b
(k)
j (ψ)

) . (3)

5. At k = n, each user declares an estimate θ̂(n)
i = argmaxθ∈ΘM ρ

(n)
i (θ).

Note that the private belief vector ρ(k)
i remain locally with the users while their public belief vectors

b
(k)
i are exchanged with the neighbors.
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Theorem 1. Given a finite set ΘM with M parameters. Fix some θ∗M ∈ Θ∗M . Using the distributed
learning algorithm described above, for any given confidence δ ∈ (0, 1) we have

P(∃ i ∈ [N ] s.t. θ̂(n)
i 6= θ∗M ) ≤ δ,

when the number of samples satisfies

n ≥ max

{
16C logN

K(ΘM )(1− λmax(W ))
,

16C log NM
δ

K(ΘM )2
,

2 log(2M)

K(ΘM )

}
, (4)

where we define

K(ΘM ) := min
θ,ψ∈ΘM :θ 6=ψ

N∑
j=1

vjIj(θ, ψ),

and define

Ij(θ, ψ) := EPj [DKL (lj(·; θ∗, Xj)||lj(·;ψ,Xj))−DKL (lj(·; θ∗, Xj)||lj(·; θ,Xj))] ,

where v = [v1, v2, . . . , vN ] the unique stationary distribution of W with strictly positive compo-
nents, λmax(W ) = max1≤i≤N−1 λi(W ), λi(W ) denotes eigenvalue of W counted with algebraic
multiplicity and λ0(W ) = 1 and C = L

α .
Remark 1. The lower bound on the number of samples grows logarithmically in the number of
users in the network and number of parameters to be distinguished. The lower bound also inversely
depends on K(θM ) which dictates the smallest rate at which the users distinguishes between true
parameter and the wrong parameters across the network.

Let ri(x, y) denote the risk function of user i ∈ [N ] associated with sample (x, y) ∈ Di. The expected
risk at user i when θ is the underlying parameter is given by Ri(θ) = EPi

[∫
Y ri(x, y)li (y; θ, x) dy

]
.

Now, using the above theorem we obtain the following bounds on the average expected risk over the
network as a corollary.
Corollary 1. Suppose the parameter space Θ consists of countably many parameters. For any r > 0,
define Br(θ) =

{
ψ ∈ Θ : 1

N

∑N
i=1 EPi [DKL(li (·; θ, x) ||li (·;ψ, x))] ≤ r

}
. Consider ΘM ⊂ Θ of

cardinality M , such that Θ ⊂ ∪θ∈ΘMBr(θ). Fix some θ∗M ∈ Θ∗M . If |ri(x, y)| ≤ B for all x ∈ Xi,
y ∈ Y , then using the above algorithm with probability at least 1− δ for the number of samples given
by (4) we have

1

N

N∑
i=1

|Ri(θ∗)−Ri(θ∗M )| ≤ B

N

N∑
i=1

EPi

[∫
Y
|li (y; θ∗, x)− li (y; θ∗M , x)| dy

]
(a)

≤ B

2N

N∑
i=1

EPi

[√
DKL (li (y; θ∗, x) ||li (y; θ∗M , x))

]
(b)

≤ B

2

√√√√ 1

N

N∑
i=1

EPi [DKL (li (y; θ∗, x) ||li (y; θ∗M , x))]

(c)

≤ B
√
r

2
,

where (a) follows from Pinsker’s inequality, (b) from Jensen’s inequality and (c) follows from
Theorem 1.

A similar corollary can be obtained for a continuous parameter set Θ by using the Hellinger distance
to construct an r-covering and by using the relation between Hellinger distance and total variational
distance.

Example 1 Revisited (Distributed Bayesian Linear Regression). Now we embed the users in

an aperiodic network with edge weights given by W =

[
0.9 0.1
0.6 0.4

]
. Fix d = 2, m = 1 and

4



θ∗ = [−0.3, 0.5, 0.8]T . In other words, Θ = R3 and X = R2. Suppose the observation noise is
distributed as η ∼ N (0, α2) where α = 0.8. User A makes observation corresponding to x1, i.e., in
R and user B makes observations corresponding to x2, i.e., in R. We assume each user starts with a

Gaussian prior over θ with zero mean [0, 0, 0]T and covariance matrix given by

[
0.5 0 0
0 0.5 0
0 0 0.5

]
.

Furthermore, x1 is sampled from Unif[−1, 1] which can be accessed by user A only and x2 is
sampled from Unif[−1.5, 1.5] which can be accessed by user B only. However, the test set consists
of observations corresponding to X .

Suppose there exists a central user which has access to a training set which consists of observations
corresponding to X . This central user obtains a posterior on θ using the training set samples and
uses the posterior distribution to make a Bayesian prediction on the samples in the test set. Then,
Figure 1(a) shows Mean Squared Error (MSE) of the prediction over the test set for the central user.
For the distributed setup, there are two cases:

1. Training without cooperation among users: In this case we assume that each user uses only
the local observations to train, hence obtains the posterior distribution on θ using the local
training samples only. Figure 1(a) shows MSE of the Bayesian prediction over the test set
for both users for this case. Comparing Figures 1(a) and (b) we can see that MSE of both
users is higher than that of central user implying the performance of users has degraded due
to insufficient local information to learn θ∗.

2. Training using the proposed distributed learning rule: In this case we assume that each user
uses the local observations and the posterior distribution on θ obtained from its neighboring
users to train. The exchange and merge of posterior distribution among neighboring users is
dictated by our distributed learning rule. Figure 1(c) shows MSE of the prediction over the
test set for both users for this case. Comparing Figures 1(a) and (c) we can see that MSE of
both users matches that of central user implying using the proposed learning rule to train the
users were able to learn θ∗.

Remark 2. Note that likelihood functions considered in Example 1 violate the bounded likelihood
functions assumption since the likelihood functions in it are Gaussian. Furthermore, the parameters
belong to a continuous parameter set Θ. This example demonstrates that our analytical assumptions
on the likelihood functions and the parameter set are not necessary for convergence of our distributed
learning rule.

3.1 Application to Training DNNs

Each iteration of the algorithm described above involves a local Bayesian update (2), followed
by a consensus step (3). Exactly computing the normalizing constants in these update rules is
computationally intractable for most practical problems. We propose the following modifications to
make the general scheme proposed above suitable for learning DNN models.

• For the local Bayesian update rule, we can employ Variational Inference (VI) (Gal, 2016,
Chapter 3) techniques to obtain an approximate posterior at each user. This involves solving
the following objective function over a parametrized class of distributions (qϕ(·)).

LV I(θ) :=

∫
Θ

qϕ(θ) log li (y; θ, x) dθ +DKL

(
qϕ(θ)||ρ(k)

i (θ)
)

(5)

• Furthermore, Since the private belief (i.e., ρ(k)
i (·) only appears in the KL Divergence term

in (5), using an unnormalized form of belief vector ρi does not alter the optimization
problem. More specifically, for any κ > 0, we have

DKL

(
qϕ(θ)||κρ(k)

i (θ)
)

= DKL

(
qϕ(θ)||ρ(k)

i (θ)
)

+

∫
qϕ(θ) log κ dθ

= DKL

(
qϕ(θ)||ρ(k)

i (θ)
)

+ log κ

Thus we can perform the consensus update with the unnormalized beliefs.
• Furthermore, instead of performing updates after every observed sample, a batch of observa-

tions can be used for obtaining the approximate posterior update using VI techniques.
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Figure 1: Figure shows the MSE of Bayesian prediction on the test set samples over time for three
cases: (a) a central user trained with samples across the network, (b) user A and B trained only
using the local observations with no cooperation among the users (c) user A and B trained using the
proposed distributed learning rule which combines local observations with the posterior over the
parameter θ received from the neighboring users.

4 Discussion and Future Work

In this paper, we considered the problem of decentralized learning over a network of users with
no central server. Moreover, our framework allows the individual users only sample points from
small subspaces of the input space. The users take Bayesian-like approach via the introduction of a
belief on the parameter space. We considered a learning scheme in which users iterate and aggregate
the beliefs of their one-hop neighbors and collaboratively estimate the global optimal parameter.
We obtained high probability bounds on the network wide worst case probability of error, and also
discussed suitable approximations for applying this algorithm for learning DNN models.

An important area of future work is to conduct empirical studies to evaluate the performance of the
proposed algorithm in learning DNN models.

6



References
Gal, Y. (2016). Uncertainty in deep learning. University of Cambridge.
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5 Appendix

5.1 Proof of Theorem 1

The proof of Theorem 1 is based the proof provided by Lalitha et al. (2018). For the ease of exposition,
let ρ(0)

i (θ) = 1
M for all θ ∈ ΘM . Fix some θ∗M ∈ Θ∗M . We begin with the following recursion for

each user i and any θ ∈ ΘM \ θ∗M ,

1

n
log

ρ
(n)
i (θ∗M )

ρ
(n)
i (θ)

=
1

n

N∑
j=1

n∑
k=1

W k
ijz

(n−k+1)
j (θ∗M , θ),

where

z
(k)
j (θ∗M , θ) = log

lj

(
Y

(k)
j ; θ∗M , X

(k)
i

)
lj

(
Y

(k)
j ; θ,X

(k)
i

) .

From the above recursion we have

1

n
log

ρ
(n)
i (θ∗M )

ρ
(n)
i (θ)

=
1

n

N∑
j=1

(
n∑
k=1

(
W k
ij − vj

)
z

(n−k+1)
j (θ∗M , θ)

)
+

1

n

N∑
j=1

vj

(
n∑
k=1

z
(n−k+1)
j (θ∗M , θ)

)

≥ − 1

n

N∑
j=1

n∑
k=1

∣∣W k
ij − vj

∣∣ ∣∣∣z(k)
j (θ∗M , θ)

∣∣∣+
1

n

N∑
j=1

vj

(
n∑
k=1

z
(k)
j (θ∗M , θ)

)
(a)

≥ − 4C logN

n(1− λmax(W ))
+

1

n

N∑
j=1

vj

(
n∑
k=1

z
(k)
j (θ∗M , θ)

)
,

where (a) follows from Lemma 1 and the boundedness assumption of log-likelihood ratios. Now fix
n ≥ 8C logN

ε(1−λmax(W )) , since ρ(n)
i (θ∗M ) ≤ 1 we have

− 1

n
log ρ

(n)
i (θ) ≥ − ε

2
+

1

n

N∑
j=1

vj

(
n∑
k=1

z
(k)
j (θ∗M , θ)

)
.

Furthermore, we have

P

− 1

n
log ρ

(n)
i (θ) ≤

N∑
j=1

vjIj(θ
∗
M , θ)− ε


≤ P

 1

n

N∑
j=1

vj

(
n∑
k=1

z
(k)
j (θ∗M , θ)

)
≤

N∑
j=1

vjIj(θ
∗
M , θ)−

ε

2

 ,

where

Ij(θ
∗
M , θ) = E[zj(θ

∗
M , θ)]

= EPj [DKL (lj(·; θ∗, Xj)||lj(·; θ,Xj))]− EPj [DKL (lj(·; θ∗, Xj)||lj(·; θ∗M , Xj))] .

Now for any j ∈ [N ] note that

N∑
j=1

vj

n∑
k=1

z
(k)
j (θ∗M , θ) =

n∑
k=1

 N∑
j=1

vjz
(k)
j (θ∗M , θ)−

N∑
j=1

vjE[z
(k)
j (θ∗M , θ)]

+ n

N∑
j=1

vjIj(θ
∗
M , θ).

For any θ ∈ ΘM \ θ∗M , applying McDiarmid’s inequality for any ε > 0 and for all n ≥ 1 we have

P

 n∑
k=1

 N∑
j=1

vjz
(k)
j (θ∗M , θ)−

N∑
j=1

vjE[z
(k)
j (θ∗M , θ)]

 ≤ −εn
2

 ≤ e− ε2n2C .
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This implies for all θ ∈ ΘM \ θ∗M ,

P

 1

n

N∑
j=1

vj

(
n∑
k=1

z
(k)
j (θ∗M , θ)

)
≤

N∑
j=1

vjIj(θ
∗
M , θ)−

ε

2

 ≤ e− ε2n2C

Hence, for all θ ∈ ΘM \ θ∗M , for n ≥ 8C logN
ε(1−λmax(W )) we have

P

−1

n
log ρ

(n)
i (θ) ≤

N∑
j=1

vjIj(θ
∗
M , θ)− ε

 ≤ e− ε2n4C ,

which implies

P
(
ρ

(n)
i (θ) ≥ e−n(

∑N
j=1 vjIj(θ

∗
M ,θ)−ε)

)
≤ e− ε

2n
4C .

Using this we obtain a bound on the worst case error over all θ and across the entire network as
follows

P

(
max
i∈[N ]

max
θ∈ΘM\θ∗M

ρ
(n)
i (θ) ≥ e−n(K(ΘM )−ε)

)
≤ NMe−

ε2n
4C ,

where K(ΘM ) := minθ,ψ∈ΘM :θ 6=ψ
∑N
j=1 vjIj(θ, ψ). Choose ε = K(ΘM )

2 . Therefore, for a given
confidence δ ∈ (0, 1) we have

Perror ≤ P

(
max
i∈[N ]

max
θ∈ΘM\θ∗M

ρ
(n)
i (θ) ≥ 1

2M

)
≤ δ,

when the number of samples satisfies

n ≥ max

{
16C logN

K(ΘM )(1− λmax(W ))
,

16C log NM
δ

K(ΘM )2
,

2 log(2M)

K(ΘM )

}
.

Lemma 1 ( Shahrampour et al. (2016)). For a strongly connected aperiodic network, the Markov
chain with transition probabilities given by W is irreducible and aperiodic, and the unique stationary
distribution v = [v1, v2, . . . , vN ] has strictly positive components and satisfies

vi =

n∑
j=1

vjWji.

Furthermore, for any i ∈ [N ] the weight matrix satisfies

n∑
k=1

N∑
j=1

∣∣W k
ij − vj

∣∣ ≤ 4 logN

1− λmax(W )
,

where λmax(W ) = max1≤i≤N−1 λi(W ), where λi(W ) denotes eigenvalue of W counted with
algebraic multiplicity and λ0(W ) = 1.
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