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1 Introduction

Motivation. Computer vision tasks are difficult because of the large variability in the data that is
induced by changes in light, background, partial occlusion as well as the varying pose, texture and
shape of objects. Generative approaches to computer vision allow us to overcome this difficulty by
explicitly modeling the physical image formation process. Such models can produce images R(y)
using a deterministic rendering engine R and a set of parameters y that define the scene in terms of
e.g. light sources and object properties. The analysis of an observed image x is then performed via
Bayesian inference of the posterior distribution p(y|x).
Problem. This conceptually simple approach tends to fail in practice because of several difficulties
stemming from sampling the posterior distribution [4]: high-dimensionality and multi-modality of
the posterior distribution p(y|x) as well as expensive simulation of the rendering process. Sampling
p(y|x) is typically performed with a Markov Chain Monte Carlo algorithm, such as Metropolis-
Hastings [9, 4]. The general idea is to sequentially generate samples from the posterior distribution
of y by performing the following two steps:

1. Generate a new point from the proposal distribution: yt+1 ∼ Q(·|yt).
2. Accept the new point with the acceptance probability:
A(yt+1, yt) = min

(
1, p(yt+1)Q(yt|yt+1)

p(yt)Q(yt+1|yt)

)
.

The main difficulty of MCMC in a computer vision context is how to choose the proposal distribution
accurately so that maxima of the posterior are explored early and the Markov chain quickly converges
to a valid image interpretation.

Contribution. In this work, we propose to use a Bayesian Neural Network for estimating an image
dependent proposal distribution Q(·|x). Compared to a standard Gaussian random walk proposal,
this will accelerate the sampler in finding regions of the posterior with high value. In this way, we
can significantly reduce the number of samples needed to perform facial image analysis.

2 Methodology

Generative Face Model. In the context of facial image analysis, the 3D Morphable Model (3DMM)
[2] is commonly used as prior for the 3D face geometry, color as well as the computer graphics
parameters needed for the rendering process. Schönborn et al. [9] proposed using the Metropolis
Hastings algorithm to estimate the posterior over the model parameters y:

p(y|x) ∼ p(x|y)p(y). (1)
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The likelihood p(x|y) measures the similarity between the target image x and the rendered image
R(y) assuming pixel-wise independence. Given a posterior estimate, we can perform a multitude
of facial image analysis tasks, such as face recognition [1], 3D face reconstruction [9] or face
manipulation [10].

Informed Sampler. A key component of an MCMC sampler is the proposal distribution Q(y). In
the context of computer vision, Q(y) needs to be carefully tuned in order to explore the posteriors
maxima in a reasonable time. In order to overcome this limitation Jampani et al. [4] propose to
combine a local Gaussian random walk proposal QL with an image dependent, global proposal
distribution QI :

yt+1 ∼ αQL(·|yt) + (1− α)QI(·|x). (2)
The global proposal distribution is estimated discriminatively based on the input image. In [4] the
authors propose to use manually designed image features and a kernel density estimate for estimating
QI(·|x). We instead propose to learn this distribution from data using Bayesian Neural Networks.
Bayesian Neural Networks. A Bayesian Neural Network (BNN) estimates, in contrast to traditional
Neural Networks, not only a point estimate but also the corresponding uncertainties. In [5], Kendall
and Gal describe model (Epistemic) and data (Heteroscedastic Aleatoric) uncertainties to be crucial
for computer vision tasks and introduce an approach to unify both uncertainties within a BNN. We
build upon this approach and estimate our global distribution QI(·|x) with a BNN which is in turn
used to inform the MCMC sampler. In doing so, we place a prior distribution over the neural network
weights W to capture the model uncertainty. We estimate the posterior distribution of W during
training using Bayesian inference given our training data X = { x1, . . . , xN} and Y { y1, . . . , yN}:

p(W | X,Y ) =
p(X,Y |W )p(W )∫
p(Y | X,W )p(W )dW

(3)

Subsequently, we formulate our data uncertainty in terms of a Gaussian likelihood p(y | fW (x)) =
N (fW (x), σ2) because the 3DMM parameters Y are continuous values. Here, the mean is denoted
as our model output fW (x) and σ2 defines the corresponding variance. Having estimated both
uncertainties, we combine these uncertainties as described in [5] to obtain our informed proposal
distribution QI(·|x).

3 Experiments

Datasets and setup. We train our BNN on synthetic data in similar to as proposed by Kim et al.
[6]. We train an AlexNet [7] architecture using 300K synthetically generated face images with
corresponding 3DMM parameters {X,Y }. The code and data used for our experiments will be made
available 2. For testing, we use a sample of 150 face images from the CMU-Multipie face dataset [3],
sampled from Session-01 using the frontal and 30◦ cameras.

(a) (b) (c)

Figure 1: Uncertain 3D face reconstruction with BNNs. We illustrate the joint pose and shape
distribution for simplicity. Note that our model predicts a joint distribution over all 3DMM parameters.
(a) The test image from the AFLW dataset [8]. (b) The mean prediction of our BNN. (c) Samples
from the joint prediction uncertainty in head pose and 3D shape. Notably, the variability in the head
pose is low, whereas the remaining variability in the shape is comparably high (e.g. the nose region).

Qualitative results. Figure 1 illustrates the prediction uncertainty of our model given the test image
in Figure 1a. Note that the mean prediction (Figure 1b) has a correct head pose and a similar 3D face
shape as the face in the test image. The prediction uncertainty of our model (Figure 1c) is visualized

2https://github.com/unibas-gravis/bnn-informed-face-sampler
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by sampling from the normal distribution defined by the mean prediction and the joint uncertainty
estimated as described in the previous section. Note the remaining variability in the head pose is low,
whereas it is large in the shape, e.g. in the nose region. This observation is reasonable as the 3D head
pose can in principle be estimated from the 2D spatial configuration of a few facial features, whereas
the estimation of the 3D face geometry from a single monocular image is ill-posed.

Quantitative results. We integrate the uncertain prediction of our BNN into Markov Chain Monte
Carlo (MCMC) sampling as an informed proposal distribution QI(·|x). In Figure 2 we compare our
BNN-informed sampling to one with an uninformed block-wise Gaussian proposal distribution when
applied to the test image in Figure 2a. When plotting the maximal unnormalized posterior over runs
of 10000 samples we can observe that the proposed BNN-informed MCMC (red curve) explores
samples with high posterior values earlier compared to the uninformed sampler (blue curve). From
the plot, we can also see that the BNN-informed sampler reaches the maximal posterior value of the
uninformed sampler already after about 3500 samples (green vertical line). Overall this results in a
better image interpretation (Figure 2c) compared to the uninformed sampler (Figure 2d).

We test the significance of our result by evaluating the informed and uninformed samplers over a
population of 150 face images from the CMU-Multipie dataset. We compare the maximal posterior
observed with a ranked Friedmann test and obtain a p-value of 5.7 × 10−5. This result highlights
the superiority of our approach over an uninformed sampler in terms of exploring the maxima of the
posterior within a fixed frame of samples.

(a) (b) (c) (d)

Figure 2: Comparison of uninformed and BNN-informed MCMC. (a) The test image. (b) Maximal
observed posterior over 10K samples for both MCMC approaches. Our informed sampler (red curve)
explores high posterior values faster than the uninformed sampler (blue curve). It also reaches the
same maximal posterior value after already about 3500 samples (green vertical line). Therefore it can
obtain a better image interpretation (c) compared to an uninformed sampler (d) within a fixed frame
of 10K samples.

4 Discussion

We have presented a novel approach to inform MCMC sampling with Bayesian Neural Networks. In
our experiments we demonstrate that:

BNNs allow for the estimation of an image-dependent proposal distribution. Our qualitative
results indicate that the BNN estimate is a meaningful measure of the uncertainty in the 3D face
reconstruction process (Figure 1).

BNN-Informed MCMC significantly improves the exploration of maximal posterior regions
compared to an uninformed Gaussian random walk. An extensive evaluation of our approach on
a population of 150 face images demonstrated a highly significant improvement in terms of the
observed the face reconstruction quality (Figure 2).
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