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Abstract
Bayesian optimal experimental design (OED) is a principled framework for making efficient
use of limited experimental resources. Unfortunately, the applicability of OED is hampered
by the difficulty of obtaining accurate estimates of the expected information gain (EIG) for
different experimental designs. We introduce a class of fast EIG estimators that leverage
amortised variational inference and show that they provide substantial empirical gains over
previous approaches. We integrate our approach into a deep probabilistic programming
framework, thus making OED accessible to practitioners at large.

1 Introduction
Tasks as seemingly diverse as designing a study to elucidate an aspect of human cognition, selecting
the next query point in an active learning loop, and tuning a microscope all fit tidily within the
framework of optimal experiment design (OED). Though numerous approaches to choosing optimal
designs exist [5, 30], arguably the most natural is to maximize the expected information gained from
the experiment [6, 19, 25, 31, 38]. This information theoretic formulation of experiment design
is very general and has been applied in numerous settings, including psychology [22], Bayesian
optimisation [14], active learning [12], bioinformatics [37], and neuroscience [32].

Following Bayesian decision theory [20], one begins with a likelihood model and a prior over model
parameters, and then chooses the design that maximises the expected information gain (EIG) of
the parameters of interest. In other words, one seeks the design that, in expectation over possible
experimental outcomes, most reduces the entropy of the posterior for the target parameters. This OED
framework is particularly powerful in a sequential context, where it allows the results of previous
experiments to be used in guiding the designs for future experiments.

For OED to have the broadest possible impact, it should be partially, or even fully, automated. This
motivates embedding OED in a probabilistic programming language so that the full experimental
pipeline—from model specification and inference to design optimization—can be carried out in a
unified system [23, 25]. Designing such a system entails several challenges. Our core contribution
is to introduce efficient variational methods for EIG estimation that are applicable to a wide variety
of models. The first method, which is related to amortised variational inference [9, 16, 24, 28, 34],
employs an approximate posterior distribution, parameterized by the design and experimental outcome.
In a similar manner the second method employs a variational distribution for the marginal density over
experimental outcomes for a given design. Both methods can benefit from recent advances in defining
flexible families of amortised variational distributions using neural networks (e.g. normalising flows
[27, 35]). For this reason we developed our system1 in Pyro [4], a deep probabilistic programming
language that provides first class support for neural networks and variational methods.

1Our implementation will soon be made available at https://github.com/uber/pyro.
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We note that our methods are also directly applicable to the calculation of mutual informations and
Kullback-Leibler divergences of marginal distributions. They thus have a large number of potential
applications in estimating objectives for training deep generative models [1, 7, 8, 11, 36].

2 EIG Estimation

Consider a model specified by the joint density p(y, θ|d) = p(y|θ, d)p(θ), where d is the (non-
random) design of the experiment, θ is a latent random variable and y is the observed outcome of
the experiment. Then the EIG is given by the expected reduction in entropy from the prior to the
posterior under the marginal distribution over outcomes p(y|d) = Ep(θ)[p(y|θ, d)], that is

EIG(d) = Ep(y|d)
[
H[p(θ)]−H[p(θ|y, d)]

]
(1)

=

∫∫
p(y, θ|d) log

p(θ|y, d)

p(θ)
dy dθ =

∫∫
p(y, θ|d) log

p(y|θ, d)

p(y|d)
dy dθ, (2)

further details on which are given in Appendix B. Computing (2) is extremely challenging, since
neither p(θ|y, d), p(y|d), nor the outer integral can, in general, be found in closed form: it forms
a nested estimation. Despite noted drawbacks [26], nested Monte Carlo (NMC) estimation of the
EIG remains the go-to approach in the literature [22, 38]. Most notably, while simple Monte Carlo
estimators converge with a mean squared error rate O(N−1) in the total number of samples, NMC
estimators converge at a much slower O(N−2/3) rate and are biased, though consistent [26].

2.1 Variational Optimal Experimental Design

The NMC approach is inefficient because it constructs an independent estimate of p(θ|y, d) or p(y|d)
for each outcome y. Our key insight is that by taking a variational approach, we can instead learn an
amortized approximation for either p(θ|y, d) or p(y|d), and then use this approximation to efficiently
estimate the EIG. In essence, the estimate of p(y1|d) provides information about p(y2|d) for similar y1
and y2 (presuming some smoothness in the density) and so it is more efficient to learn the functional
form for p(y|d) (or p(θ|y, d)), than to treat separate values of y as distinct inference problems.

More concretely, we construct a variational bound, Lp(d), using the amortized posterior approxima-
tion qp(θ|y, d):

EIG(d) =

∫∫
p(y, θ|d) log

p(θ|y, d)qp(θ|y, d)

qp(θ|y, d)
dy dθ +H[p(θ)] (3)

=

∫∫
p(y, θ|d) log qp(θ|y, d) dy dθ +H[p(θ)] + Ep(y|d) [KL (p(θ|y, d)||qp(θ|y, d))] (4)

≥
∫∫

p(y, θ|d) log qp(θ|y, d) dy dθ +H[p(θ)] , Lp(d). (5)

In analogy with variational inference, this bound is tight when qp(θ|y, d) = p(θ|y, d). Alternatively,
we can instead introduce a marginal density approximation qm(y|d), giving an upper bound Um(d):

EIG(d) =

∫∫
p(y, θ|d) log p(y|θ, d) dy dθ −

∫
p(y|d) log

p(y|d)qm(y|d)

qm(y|d)
dy (6)

=

∫∫
p(y, θ|d) log p(y|θ, d) dy dθ −

∫
p(y|d) log qm(y|d) dy − KL (p(y|d)||qm(y|d)) (7)

≤
∫∫

p(y, θ|d) log p(y|θ, d) dy dθ −
∫
p(y|d) log qm(y|d) dy , Um(d), (8)

where the bound again becomes tight for qm(y|d) = p(y|d).

In certain cases, p(y|θ, d) cannot be computed pointwise. For example, this is the case in the presence
of nuisance variables, also known as random effects. These are additional latent variables, ψ, that
we do not consider variables of interest, such that we do not want to waste resources reducing our
uncertainty for them. Such models arise frequently in scientific applications, for instance accounting
for individual variation between participants in a survey. With random effects ψ we have

p(y|θ, d) =

∫
p(y|θ, ψ, d)p(ψ|θ)dψ (9)
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which is typically intractable. Fortunately, the posterior bound is unchanged by random effects. Our
marginal method can be adapted to this random effects setting by introducing an approximation to
p(y|θ, d) as shown in Appendix C. To estimate the relevant integrals, we can still draw exact samples
from p(y|θ, d) by drawing from the joint p(y|θ, ψ, d)p(ψ|θ).

2.2 Estimation

Just as in variational inference, the bounds in the previous section can be maximised with stochastic
gradient methods [29]. Concretely, suppose Q is a family of amortised variational approximations
qp(θ|y, d;φ) indexed by φ. We can estimate EIG by maximizing the lower bound Lp(d;φ):

EIG(d) ≈ max
φ
Lp(d;φ) = max

φ

{∫∫
p(y, θ|d) log qp(θ|y, d;φ) dy dθ

}
+H[p(θ)] (10)

To do so only requires that we can generate samples from the model, yi, θi ∼ p(y, θ|d); in a proba-
bilistic programming context this corresponds to running the model forwards with no conditioning.
We can then construct the required Monte Carlo estimates for the gradient as

∇φLp(d;φ) ≈ ∇φ

{
1

N

N∑
i=1

log qp(θi|yi, d;φ)

}
where yi, θi

i.i.d.∼ p(y, θ|d), (11)

noting that no re-parameterization is required as p(y, θ|d) is independent of φ. An analogous scheme
can be constructed for the upper bound Um(d;φ), expect that we now perform a minimization.
Maximizing over the design space can then be done with a variety of optimization methods; in our
experiments we make use of Bayesian optimization [33].

3 Experiments

We validate our EIG estimators on a selection of Generalized Linear Mixed Models (GLMMs). These
serve as useful benchmarks, since they are workhorse models in many different scientific disciplines.
Our results are summarized in Table 1 and Fig. 1-6 in Appendix D.7. In all six cases, both estimators
(i.e. the posterior method based on qp and the marginal method based on qm) give significantly lower
variance than the NMC baseline, and in two of the three cases a significantly lower bias as well. We
note that NMC especially struggled with random effects (LinReg + RE). More worryingly still, the
bias of the NMC estimator can exhibit strong systematic variation as a function of the design, see
Fig. 2 for instance. This is problematic because it can lead to the choice of a significantly suboptimal
design. It is also worth emphasizing the utility of having multiple variational methods at our disposal:
while the marginal method yields poor EIG estimates for the model with a large output dimension,
the posterior method delivers high quality estimates.

Next, we consider examples (NΓ−1Reg and NΓ−1Reg + RE) that are not purely Gaussian. Here
our methods still perform well, despite the variational families not containing the true posterior or
marginal, with both approaches having lower bias and variance than NMC.

Our final example (SigReg) goes beyond typical GLMMs and introduces a sigmoid non-linearity to
the classical mixed effects regression model. Here the marginal approach performed well, but the
posterior method struggled. We postulate that this is due to the time taken to train a larger number of
parameters for the more complex variational posterior approximation used here.

LinReg LinReg + RE LinReg-HD NΓ−1Reg NΓ−1Reg + RE SigReg
Bias 2std Bias 2std Bias 2std Bias 2std Bias 2std Bias 2std

NMC 1.37 1.93 5.33 3.84 3.13 2.97 2.66 2.36 5.65 6.26 -0.017 0.13
Posterior -0.23 0.25 -0.55 0.41 -0.29 0.31 -0.70 0.58 -0.65 0.53 -0.086 0.14
Marginal 0.34 0.15 0.36 0.20 4.57 0.29 1.45 0.58 0.09 0.26 0.0045 0.057

Table 1: Bias and variance (we report 2σ) of EIG estimation. This was averaged over 10 runs and 11
designs, each method being limited to run for 10 seconds total (for SigReg there were 10 runs, 15
designs and 80 seconds of computation). For more details on the models and experimental setup see
Appendix D. Note that the directions of the bias for the posterior and marginal match the fact that
they are lower and upper bounds, as would be expected.
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A Related Work

For completeness, we include a limited discussion of related work that was not referred to in the
main text. In the context of information maximization in noisy channels, [2] uses a variational bound
on mutual information that is closely related to our ‘posterior’ bound Lp(d). In the context of deep
learning (e.g. adversarially trained generative models), [3] uses a related bound that is based on the
Donsker-Varadhan representation of the KL divergence [10] to estimate mutual information between
high dimensional continuous random variables. With particular attention to implicit models, [17] uses
density ratio estimation via logistic regression to construct an algorithm for approximate Bayesian
OED; this approach is related to our ‘marginal’ bound Um(d) but is not a variational method (no
bound is being optimized). The Laplace approximation is used in the context of OED by various
authors, see for example [21, 30], with it being used particularly effectively in the specific context of
generalized linear models by [18]. Finally, for a recent review of Bayesian OED with a comprehensive
set of references (especially from the statistics community) see [30].

B Background on Expected Information Gain Maximization

In this section, we provide a more detailed background on the EIG maximization approach. Under
our model, the outcome of the experiment given a design d is distributed according to

p(y|d) =

∫
p(y, θ|d)dθ =

∫
p(y|θ, d)p(θ)dθ, (12)

where we have used the fact that p(θ) = p(θ|d) because θ is independent of the design. Our aim is to
choose the optimal design d under some criterion. We therefore define a utility function, U(y, d),
representing the utility of running an experiment according to a design d and obtaining an outcome y.
Typically our aim is to maximize information gathered from the experiment, and so we set U(y, d) to
be the gain in Shannon information between the prior and the posterior

U(y, d) = H[p(θ)]−H[p(θ|y, d)] =

∫
p(θ|y, d) log(p(θ|y, d))dθ −

∫
p(θ) log(p(θ))dθ. (13)

However, we are still uncertain about the outcome. Thus, we use the expectation of U(y, d) with
respect to p(y|d) as our target:

EIG(d) =

∫
p(y|d)

(∫
p(θ|y, d) log(p(θ|y, d))dθ −

∫
p(θ) log(p(θ))dθ

)
dy

=

∫∫
p(y, θ|d) log

(
p(θ|y, d)

p(θ)

)
dθdy (14)

noting that this corresponds to the mutual information between the parameters θ and the observations
y. The Bayesian-optimal design is then given by

d∗ = arg max
d∈D

EIG(d). (15)

whereD is the permissible set of designs. We can intuitively interpret d∗ as being the design that most
reduces the uncertainty in θ on average over possible experimental results. If our likelihood model is
correct, i.e. if experimental outcomes are truly distributed according to p(y|θ, d) for a given θ and d,
then it is easy to see from the above definition that d∗ is the true optimal design, in terms of information
gain, given our current information about the parameters p (θ). In practice, our likelihood model is
an approximation of the real world. Nonetheless, EIG maximization remains a very powerful and
statistically principled approach that is typically significantly superior to more heuristic alternatives.
For example, the state-of-the-art entropy based Bayesian optimization acquisition strategies are
particular cases of Bayesian OED [13, 14]. However, a major drawback to the EIG maximization
approach is that it is typically difficult and computationally intensive to carry out. Not only does it
represent an optimization of an intractable expectation, this expectation is itself nested because the
integrand is itself intractable due to the p(θ|y, d) term.

We note that the EIG admits a number of different interpretations: 1) as the expected gain in Shannon
information; 2) as the expected Kullback-Leibler (KL) divergence between posterior and prior; 3) as
the expected epistemic uncertainty in the response y; 4) as the negative average posterior entropy
(plus a constant); and 5) as the mutual information between y and θ.
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B.1 Automating Sequential Design Problems

We have thus far assumed that there is no previous data (i.e. design-outcome pairs). Though this
static experimental design setup is of use in its own right, the full potential of EIG maximization is
not realized until one considers using it in sequential settings. Here EIG provides a framework for
adaptively making an optimal series of decisions in an online fashion in the presence of uncertainty.
For example, imagine a psychology trial where we ask a participant a series of questions to learn
about certain behavior characteristics. If a human is conducting this experiment they are likely to
adapt the questions they ask as they learn about the participant to try and maximize the information
gathered. Sequential EIG maximization provides a mathematical framework for reasoning about
and optimizing such processes, thereby providing a means of developing effective machine learning
systems to carry out such tasks.

We can generalize to the sequential design setting by incorporating data in the standard Bayesian
fashion such that at experiment iteration t, we replace p (θ) with p (θ|d1:t−1, y1:t−1), where d1:t−1
and y1:t−1 are respectively the designs and outcomes at previous iterations. The likelihood p (yt|θ, dt),
on the other hand, is unchanged (presuming it is a parametric distribution) as, conditioned on θ and
d, the current outcome is independent of the previous data. Putting this together, we get that the
expected information gain criteria for the sequential case is

EIGt(d) =

∫∫
p (θ|d1:t−1, y1:t−1) p(yt|θ, dt) log(p(yt|θ, dt))dθdyt

−
∫
p(yt|y1:t−1, d1:t) log(p(yt|y1:t−1, d1:t))dyt.

(16)

We can now see that these terms are the same as in the non-sequential case, except that expectations
are taken with respect to p (θ|d1:t−1, y1:t−1) rather than p(θ).

C Marginal method with random effects

Starting from

EIG(d) =

∫∫
p(y, θ|d) log p(y|θ, d)dy dθ −

∫
p(y|d) log p(y|d)dy, (17)

we can bound each term separately in terms of two approximate densities: qm(y|d) for the marginal
and q`(y|θ, d) for the likelihood. Specifically, we have from Gibbs’ inequality

−
∫
p(y|d) log p(y|d)dy ≤ −

∫
p(y|d) log qm(y|d)dy (18)∫∫

p(y, θ|d) log p(y|θ, d)dy dθ ≥
∫∫

p(y, θ, |d) log q`(y|θ, d)dy dθ . (19)

Here we can no longer derive a direct bound on the EIG, but we can still use these inequalities to
train an approximate marginal density qm and an amortized approximate likelihood q`, which will
yield the true EIG if they match the true marginal and likelihood respectively. Namely, suppose Q1

is a family of variational distributions qm(y|d;φ1) indexed by φ1 and Q2 is a family of variational
distributions q`(y|θ, d;φ2) indexed by φ2. Then a suitable objective for learning φ1, φ2 is

Dφ1,φ2
(d) , −

∫∫
p(y, θ, |d) log q`(y|θ, d;φ2)dy dθ −

∫
p(y|d) log qm(y|d;φ1)dy (20)

{φ∗1, φ∗2} = argminφ1,φ2
Dφ1,φ2

(d) (21)

where the optimization can be performed using stochastic gradient methods, as in the main paper.
Once these approximations have been learned, we can plug them back into (17) to give

EIG(d) ≈
∫∫

p(y, θ, |d) log q`(y|θ, d;φ∗2)dy dθ −
∫
p(y|d) log qm(y|d;φ∗1)dy (22)

which can then itself be approximated by conventional Monte Carlo sampling.
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D Experiments

D.1 LinReg

A classical Bayesian linear regression model has the following form

θ ∼ N(µθ,Σθθ) (23)

y|θ, d ∼ N(Xdθ, σ
2I) (24)

where Xd is the design matrix.

In our LinReg example, we took:

µθ = 0 (25)

Σθθ =

(
102 0
0 0.12

)
(26)

σ2 = 1 (27)

Xd =



1 0
...

...
1 0
0 1
...

...
0 1


a (10× 2) matrix (28)

with all 11 possible designs considered.

We chose families of variational distributions that include the true posterior (or true marginal). For
the amortised posterior, we set φ = (Λ, δ,Σp) and let

qp(θ|y, d;φ) ∼ N(µp,Σp) (29)

where µp = (XT
d Xd + Λ)−1XT

d (y + δ) (30)

and Λ is a diagonal matrix and Σp is positive definite. For the marginal, we simple take φ = (µm,Σm)
and

qm(y|d;φ) ∼ N(µm,Σm) (31)

Finally, for each of our variational methods we used the Adam optimizer [15] with a learning rate
specified below. Each iteration used Nt samples, with T iterations in total. We used N samples
for the final evaluation. NMC settings are N,M [38] and we took the advice of the authors to set
N = M2.

The exact parameter settings, to get about 10 seconds of computation for each method, were

NMC Posterior Marginal
N M Nt T lr N Nt T lr N

1102 110 10 1200 0.05 500 10 1200 0.05 500

D.2 LinReg + RE

In this experiment, we extended the model to include random effects. Specifically,

θ ∼ N(µθ,Σθθ) (32)
ψ ∼ N(µψ,Σψψ) (33)

y|θ, d ∼ N(Xd,θθ +Xd,ψψ, σ
2I) (34)

where

µψ = 0 (35)
Σψψ = I10 (36)
Xd,ψ = I10 (37)

8



and Xd,θ was the Xd from the previous experiment. Here θ is the random variable of interest, while
ψ is a nuisance variable that needs to be integrated out. The variational distribution for the likelihood,
q`, was the same as qm, except that the mean was shifted by Xd,θθ.

The exact parameter settings, to get about 10 seconds of computation for each method, were

NMC Posterior Marginal
N M Nt T lr N Nt T lr N
522 52 10 150 0.05 500 10 600 0.05 500

D.3 LinReg-HD

This experiment was identical to LinReg, except that we took Xd to have dimensions 20× 2, with 11
designs as before. We also altered the marginal variational distribution to reflect the new dimension
of y. Other than that, the specification of all variational distributions was identical.

The exact parameter settings, to get about 10 seconds of computation for each method, were

NMC Posterior Marginal
N M Nt T lr N Nt T lr N
902 90 10 1000 0.05 500 10 700 0.05 500

D.4 NΓ−1Reg

We changed the model to

σ2 ∼ Γ−1(α, β) (38)
θ ∼ N(µθ,Σθθ) (39)

y|θ, σ2, d ∼ N(Xdθ, σ
2I) (40)

where α = 3 and β = 2.

We used a mean-field posterior variational distribution. For θ, we used the same variational distribution
as for LinReg. For σ2 we used an inverse Gamma variational distribution. We augmented the
parameters φ with αp, b0 and took βp = b0 + 1

2 (yT y − yTXdµp). Then

qp(σ
2|y, d;φ) ∼ Γ−1(αp, βp) (41)

The marginal variational distribution was as in LinReg (a Gaussian).

The exact parameter settings, to get about 10 seconds of computation for each method, were

NMC Posterior Marginal
N M Nt T lr N Nt T lr N

1102 110 10 800 0.05 500 10 1200 0.05 500

D.5 NΓ−1Reg + RE

This model was identical to the previous one. However, we now consider σ2 to be a random effect
rather than a parameter of interest.

The exact parameter settings, to get about 10 seconds of computation for each method, were

NMC Posterior Marginal
N M Nt T lr N Nt T lr N
602 60 10 900 0.05 500 10 600 0.05 500
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D.6 SigReg

We first considered a mixed effects regression model, but with different parameters

µθ = 10 (42)

Σθθ =
(
82
)

(43)

µψ = 1 (44)

Σψψ =
(
( 1
4 )2
)

(45)

σ2 = 22 (46)

Xd,θ = (1) (47)

Xd,ψ = (x) with x ∈ [−30, 30] (48)
(49)

We also altered the model, adding a sigmoid transformation and censoring

y|θ, ψ, d = censor(sigmoid(y′)) (50)

where y′ is the output of a linear regression model. The censoring affects the output near the end-
points and maps (0, ε] to ε and [1− ε, 1) to 1− ε. This censoring both aids numerical stability and
makes the problem more interesting by censoring information gained from values very near to 0 or 1.

We chose families of variational distributions as similar to LinReg as possible. For the amortised
posterior, we set φ = (Λ, δ,Σp, µ0,Σ0, µ1,Σ1). For y ∈ (ε, 1− ε) we took

qp(θ|y, d;φ) ∼ N(µp,Σp) (51)

where µp = (XT
d Xd + Λ)−1XT

d (y + δ) (52)

as before. However, for y = ε we took

qp(θ|y, d;φ) ∼ N(µ0,Σ0) (53)

and for y = 1− ε we took

qp(θ|y, d;φ) ∼ N(µ1,Σ1). (54)

This allowed us to correctly deal with the censoring.

For the marginal, we simple took φ = (µm,Σm) and

qm(y′|d;φ) ∼ N(µm,Σm) (55)

followed by
y|d;φ = censor(sigmoid(y′)) (56)

The marginal variational distribution was the same, except with the mean shifted by Xd,θθ.

The exact parameter settings, to get about 80 seconds of computation for each method, were

NMC Posterior Marginal
N M Nt T lr N Nt T lr N
602 60 10 900 0.05 3200 10 600 0.05 500

Since no ground truth was available, we used NMC with a very large number of samples (N =
1602,M = 160).

D.7 Figures
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Figure 1: LinReg: EIG estimates for a linear regression model over 11 designs. We plot the mean and
twice the standard deviation from 10 runs. Computational time was set to 10 seconds for comparison.

Figure 2: LinReg + RE: EIG estimates for a linear regression model with random effects. Settings as
in Figure 1.

Figure 3: LinReg-HD: with settings as in Figure 1.
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Figure 4: NΓ−1Reg: EIG estimates for a Normal inverse-Gamma model. Settings as in Figure 1.

Figure 5: NΓ−1Reg + RE: EIG estimates for a Normal inverse-Gamma model treating σ2 as a random
effect. Settings as in Figure 1.
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Figure 6: SigReg: EIG estimates for a sigmoid regression model over 15 designs. We plot the
mean and twice the standard deviation from 10 runs. Computational time was set to 80 seconds for
comparison.
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