
Empirical Evaluation of Neural Process Objectives

Tuan Anh Le1∗
tuananh@robots.ox.ac.uk

Hyunjik Kim1,2

hyunjikk@google.com
Marta Garnelo2

garnelo@google.com

Dan Rosenbaum2

danro@google.com
Jonathan Schwarz2

schwarzjn@google.com
Yee Whye Teh2

ywteh@google.com

Abstract

Neural processes (NPs) [3, 4] are parametric stochastic processes that can be trained
from a dataset consisting of sets of input-output pairs. During test time, given
a context set of input-output pairs and a set of target inputs, they allow us to
approximate the posterior predictive of the target outputs. NPs have shown promise
in applications such as image super-resolution, conditional image generation or
scalable Bayesian optimization. It is, however, unclear which objective and model
specification should be used to train NPs. This abstract empirically evaluates the
performance of NPs for different objectives and model specifications. Given that
some objectives and model specifications clearly outperform others, our analysis
can be useful in guiding future research and applications of NPs.

1 Introduction

A NP [3, 4] describes a stochastic process (random function). To learn an NP, we use a distribution
over datasets. The idea being that each dataset corresponds to a single instantiation of the random
function, and the distribution over datasets allows us to learn the distribution of the random function.
At each iteration of learning, one dataset {(xi, yi)}ni=1 (or a minibatch thereof) is presented to learn
from. We assume that this dataset is split into a context set {(xi, yi)}mi=1 of size m ≤ n, and a target
set which consists of all n data pairs. Let xC , yC , xT , yT denote the inputs and outputs of the context
and target respectively, with C = {1, . . . ,m} and T = {1, . . . , n}. There are multiple objectives
and model specifications that one can use to learn the NP, and our aim is to evaluate these choices
empirically.

2 Objectives and Model Specifications

We investigate the following set of objectives and model specifications:

(
{[T |∅], [C|∅], [T |C]}︸ ︷︷ ︸

objectives with a latent variable

×

deterministic path and attention︷ ︸︸ ︷
{no det, det, att} ∪ {det, det+att}︸ ︷︷ ︸

objectives without a latent variable

)
×

observation variance︷ ︸︸ ︷{
learned var,

fixed var

}
×

{
(↓ m, ↑ n),
(↑ m, ↑ n),
(l m, l n)

}
︸ ︷︷ ︸

training distribution of (m,n)

,

which we describe below.

Joint distribution objectives with latent variable. The simplest way to describe a random func-
tion is by using a latent random variable z. We then parameterize the neural process as a deterministic
∗Work completed during a Deepmind internship. 1University of Oxford, 2Deepmind.

Third workshop on Bayesian Deep Learning (NeurIPS 2018), Montréal, Canada.

function fz : X →M1(Y) which depends on z. M1(Y) is the space of distributions (probability
measures) over Y . The randomness in z induces the randomness in fz . The random function maps
each input x ∈ X into a distribution over the corresponding output y ∈ Y . Note that we assume that
outputs are conditionally independent given the function fz , e.g. in case of iid normal observation
noise.

The simplest case is when the target and context sets are the same, n = m, and we use a standard
variational evidence lower bound to learn the NP. Specifically, we aim to optimize objective [T |∅]:

[T |∅] : log p(yT |xT) ≥
∫ ((n∑

i=1

log p(yi|fz(xi))

)
+ log

p(z)

q(z|xT , yT)

)
q(z|xT , yT)dz (1)

where p(z) is the prior, and q(z|xT , yT) is a variational posterior (encoder) over the latent variable z.
This is the supervised learning equivalent of the neural statistician (NS) [2].

The second approach takes the same objective log p(yT |xT), but lower bounds it using a variational
posterior that only depends on the context xC , yC , leading to objective [C|∅]:

[C|∅] : log p(yT |xT) ≥
∫ ((n∑

i=1

log p(yi|fz(xi))

)
+ log

p(z)

q(z|xC , yC)

)
q(z|xC , yC)dz (2)

The idea here is that at test time we are interested in evaluating the NP by evaluating its generalization
from a context set to a target set, so we should also train it under the same context/target regime. This
corresponds to the supervised version of the variational homoencoder (VHE) [5].

Conditional distribution objective with latent variable. Instead of modelling the joint distribu-
tion of all outputs, we can model the conditional of the target given the context instead, leading to
objective [T |C]:

[T |C] : log p(yT |xT ,xC , yC) ≥
∫ ((n∑

i=1

log p(yi|fz(xi))

)
+ log

p(z|xC , yC)
q(z|xT , yT)

)
q(z|xT , yT)dz

≈
∫ ((n∑

i=1

log p(yi|fz(xi))

)
+ log

q(z|xC , yC)
q(z|xT , yT)

)
q(z|xT , yT)dz (3)

The last line is an approximation as the true conditional p(z|xC , yC) is intractable.

Conditional distribution objective without latent variable. Rather than using latent variables to
define a stochastic process (random function), we can simply directly model conditional distributions
of targets given contexts. The simplest approach is as follows: let r(xC , yC) be a deterministic
function of the context xC , yC . Then we learn by optimizing the objective “det” which is used in the
conditional NP [3]:

det : log p(yT |xT , xC , yC) =
n∑

i=1

log p(yi|fr(xC,yC)(xi)) (4)

where fr(xC,yC)(x) is simply a function of both the representation of the context and the input x.

Objectives with latent variable and deterministic path. The deterministic approach loses de-
pendence among the target outputs induced by the latent variable z. We can re-introduce the latent
variable z, but now think of z not as capturing the stochasticity in the whole stochastic process,
but rather as capturing the stochasticity in the conditional process given the context. To do this,
define fr,z with a deterministic r = r(xC , yC) representing dependence on context, and a stochastic z
describing the stochasticity in the random function conditional on the context. We can train NPs using
objectives in (1)–(3) with the decoder being fr(xC,yC),z instead of fz . We denote these objectives by
det+[T |∅], det+[C|∅], and det+[T |C] respectively.

Attention. Kim et al. [6] propose using attention [8, 7] in the deterministic encoder as a way
to address the issue of underfitting that is observed in the original model specification of NPs.
Here, the deterministic representation r(xC , yC) additionally takes in the target input xi so that the
representation attends to relevant context points. This results in a decoder of the form frxi

(xC,yC),z

or frxi
(xC,yC) depending on whether it is used in objectives (1)–(3) for NPs or in objective (4) for a

conditional NP. We denote these objectives by att+[T |∅], att+[C|∅], att+[T |C], and det+att.

2

Observation variance. The likelihood termp(yi jf z (x i)) is typically a Normal distribution whose
parameters are given by the output of the decoder neural networkf z (x i). While Garnelo et al.[4] �x
the variance of the Normal distribution, Kim et al.[6] learn it. We investigate the effect of this design
choice.

Training distribution of (m; n). NPs are typically trained by choosing a distribution of(m; n)
conditioned on which we form the context and target setsxC; yC; xT ; yT . Training with different
relative sizes ofm andn can presumably affect the predictive performance. Thus, we consider the
following distributions of(m; n). Small context set and large target set “# m; " n”, wherem �
[3; 47); n � [50; 100); large context set and large target set “" m; " n”, wherem � [50; 97); n �
[m + 1 ; 100); and the originally proposed “l m; l n”, wherem � [3; 97); n � [m + 1 ; 100).

3 Experiments

We run experiments on 1D data of synthetic Gaussian processs (GPs) and 2D data of MNIST images
wherex is the pixel position andy is the pixel color. The data and neural network architectures are
described in the Appendices A and B respectively.

Quantitative evaluation. We evaluate the performance through the (normalized) predictiveLL
1

n � m logp(yT nCjxT nC; xC; yC) and the (normalized) jointLL 1
n logp(yT jxT). For models without a

latent variable, we only evaluate the predictiveLL which can be done directly. In models with a latent
variable, we must resort to evaluating lower bounds:

Eq(zk j x C ;y C)

"

log

1
K

KX

k=1

p(yT nCjxT nC; zk)p(zk jxC; yC)
q(zk jxC; yC)

!#

� logp(yT nCjxT nC; xC; yC); (5)

Eq(zk j x T ;y T)

"

log

1
K

KX

k=1

p(yT jxT ; zk)p(zk)
q(zk jxT ; yT)

!#

� logp(yT jxT); (6)

where we sampleK independent importance sampleszk � q(zjxT ; yT) similarly to Burda et al.[1].
Note that to estimate the lower bound(5), we approximatep(zjxC; yC) � q(zjxC; yC), which cancels
with the term in the denominator. The jointLL metric favors models trained with objectives[T j?]
and[Cj?] as they are also lower bounds to the jointLL . The predictiveLL metric is different to the
objectives used for training, however it is similar to the objective[T jC] which is a lower bound to
the conditionalLL , logp(yT jxT ; xC; yC). We evaluate these metrics on new context and target sets
sampled from the “l m; l n” distribution of (m; n). We show quantitative evaluation of different
objectives and model speci�cations in Figure 1.

Qualitative evaluation. GivenxC; yC; xT , we plot (i) amulti-sample estimate of the mean of the
posterior predictivep(yT jxC; yC; xT), obtained by samplingz � q(zjxC; yC) multiple times and

Figure 1: Predictive log likelihood (LL) (5) and jointLL (6) (K = 1000) vs training iteration forNP
models trained with different objectives and model speci�cations on 1D syntheticGPs.

3

plotting the mean obtained by the decoder neural networkf for eachz, and (ii) asingle-sample
estimate of posterior predictive, obtained by samplingz � q(zjxC; yC) once and plotting the mean
and standard deviation given by the output of the decoder neural network. The former shows whether
the latent variable is useful in capturing variability of the stochastic process; the latter shows the
contribution of the observation noise (for models without a latent variable, we can only show the
latter). The posterior predictive samples for models trained with learned and �xed variance are shown
in Figures 2 and 3 respectively.

(a) Models with a latent variable.
(b) Models without a latent
variable.

Figure 2: Posterior predictive distribution for models with a learned observation variance, trained
on 1D syntheticGPs. Black lines and points show the target points and context points respectively.
Multi-sample plots are shown with light blue lines. Single-sample plots show the mean with a blue
line and one standard deviation using light blue shading.

Effect of objective on latent variable models. Quantitatively, there is no objective that clearly
outperforms the others. When using the predictiveLL as a metric, objective[T jC] outperforms the
other objectives in most cases (Figure 1, left). This can potentially be because this metric is more
similar to the conditionalLL which is targeted by the[T jC] objective. However, the difference
in performance is often small, especially for models that are best-performing overall (ones that
use attention). On the other hand, the jointLL of models trained with objective[T jC] is divergent
(Figure 1, right). This can potentially be due the objective[T jC] targeting a lower bound to the
conditionalLL (3) instead, and so using the learned encoderq can lead to a bad estimator of the joint
LL in (6).

Qualitatively, we observe that training with objective[T jC] typically results in higher variability in the
posterior predictive (Figure 2a and 3a). Posterior predictive distributions with higher variability can
be useful in applications ofNPs where exploration is needed, like Thompson sampling or Bayesian
optimization [3, 4]. Higher variability in the posterior predictive distribution is also observed on
2D MNIST data (Figure 4). Samples from the model trained with objective[T jC] are diverse and
look realistic. Samples from the model trained with objective[Cj?] are almost identical and blurry.
Samples from the model trained with objective[T j?] are diverse and sharp, however not realistic.
Qualitative results agree more with the predictiveLL than with the jointLL .

4

	Introduction
	Objectives and Model Specifications
	Experiments
	Conclusions
	Data
	Neural Network Architecture
	Quantitative Evaluation for MNIST data

