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1 Introduction

Deep Gaussian process (DGP) model [5], a hierarchical composition of multiple Gaussian processes,
can provide a more flexible prior distribution over functions than a single Gaussian process (GP) can.
In this work, we propose a DGP based classification method for tumor mutational burden (TMB)
prediction from histopathology whole slide images (WSIs). TMB (a quantitative measurement of the
number of mutations in a patient’s tumor), which can be fully assessed by next-generation sequencing
(NGS) technology, has been suggested as a biomarker to predict a patient’s treatment response to
immunotherapy in several cancer types, including lung and bladder cancer [3, 6]. However, one key
challenge is that not all patients would have adequate fresh tumor tissue samples or would be able to
undergo biopsy to get tumor tissues. On the other hand, WSIs are widely available, as a standard
diagnosis tool, for most cancer patients. We hypothesize that the morphological image features
calculated from whole slide images could be used to predict TMB status.

Prediction of TBM from WSIs is naturally formulated as a weakly supervised learning problem due
to the nature of WSIs: the typical size of a WSI might be 100,000x100,000 pixels, and its storage
size can range from a few hundred megabytes to several gigabytes. In most cases, a WSI is divided
into multiple (non-overlapping) small image patches (e.g., 256x256 in our experiment), and each
image patch is processed independently. Prediction of TMB from WSIs can be done similarly: we
make a prediction using a feature vector calculated from each image patch of an image and aggregate
all prediction results from the image to make a final decision. This approach can be understood as the
instance-level approach [10] in multiple instance learning (MIL): an image including multiple image
patches corresponds to a bag in MIL. However, TMB prediction from WSIs can be distinguished
from the standard MIL in the sense that a TBM-low labeled image (corresponding to a negative bag in
MIL) might contain image patches that are close to typical TMB-high image patches (corresponding
to positive instances in MIL). To handle this uniqueness of the TMB prediction problem, we use mean
pooling to aggregate prediction results from an image, instead of max pooling. Another challenge is
the high computational complexity due to the nature of WSIs. Although the number of WSIs might
be small, the number of total image patches can be massive.

We propose a DGP based classification model in the weakly supervised learning setting and provide an
efficient inference algorithm to train the model based on Black-box α-divergence (BB-α) approaches
[8, 12]. We evaluate a DGP at each image patch of an image and make a final prediction for the image
by aggregating all the prediction results through mean pooling. We train the model’s parameters in the
framework of power expectation and propagation (power EP). However, instead of using the iterative
message update method, we directly optimize the energy function which can be derived by tying local
factors (cite approximations). With different α values, the inference algorithm includes variational
inference (α = 0) or EP (α = 1) as a special case. We test our DGP based TMB prediction model on
The Cancer Genomic Atlas (TCGA) bladder cancer WSI dataset.
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2 Deep Gaussian process classifier for weakly supervised problems

2.1 Problem definition

We formulate the TMB prediction from WSIs as a binary classification problem in the weakly
supervised learning setting. For the ith image,Xi =

[
xi1,xi2, ...xiNi

]
∈ RD×Ni denotes a set of

feature vectors computed from its all Ni image patches and xij ∈ X ⊂ RD. All training input data
is denoted byX = {X1, ...,XN}, where N is the total number of training images. For each image,
we generate its label based on its actual TMB value accessed by NGS technique from the patient’s
tumor tissues: we assign yi = 1 if the ith sample is TMB-high or yi = −1 if it is TMB-low.

Assume that there is a score function to estimate the TMB value at each individual image patch of an
image, i.e., f : X 7→ R, and that the final prediction of TMB for the image is made by aggregating
the function values evaluated at all the image patches of the image through mean pooling:

p(yi = 1|f i) = Φ
(
f i
)
, (1)

where Φ is a standard cumulative Gaussian function (the likelihood of the probit regression) and f i is
the mean of the function values evaluated at all the patches of the ith image, i.e., 1

Ni

∑Ni

j=1 f(xij).

2.2 Model formulation

Our main idea is to model the score function f using a DGP with L layers: the prior over the
score function f is defined as the GP prior from the last (Lth) layer of the DGP. The probabilistic
representation of this L-layered DGP can be defined in the following recursive way [5] (for simplicity,
the latent input and the output of the lth layer are assumed to be scalar, i.e., hl−1ij , hlij ∈ R):

p(f l | θl) = GP(f l | 0, κl(·, ·)), and l = 1, ..., L (2)

p(hl|f l,hl−1, σ2
l ) =

N∏
i=1

Ni∏
j

N (hlij | f l(hl−1ij ), σ2
l ), (3)

where hl = [hl11, ..., h
l
1N1

, ..., hlij , ...h
l
N1, ..., h

l
NNN

]>. Note that h0ij = x̃ij , where x̃ij is a linear

projection of the high dimensional input point xij , i.e., x̃ij = Wxij and W ∈ RD̃×D (D̃ � D),
and h1ij = f1(x̃ij). Sparse approximation [14] is often used to reduce the computational complexity
of full GP models. Let us define inducing variables u = {u1, ...,uL}, where ul ∈ RM are inducing
variables evaluated at inducing points Zl , {zl1, ...,zlM} in the lth layer (here, zlm ∈ R). The sparse
approximate version of the above DGP model is defined in as follows.

p(ul|θl) = N (ul | 0,Kl
uu), l = 1, ..., L (4)

p(hl|f l,hl−1, σ2
l ) = N (hl|Kl

fu(Kl
uu)−1ul, diag[Ql

ff ] + σ2
l I), (5)

whereKl
uu = κ(Zl,Zl),Kl

fu = κ(hl−1,Zl) andQl
ff = Kl

fu−K
l
fu(Kl

uu)−1Kl
uf . Here, κ is a

covariance function with parameters θl, and an automatic relevance determination (ARD) covariance
function is used in every layer. With the likelihood defined in (1), the probabilistic graphical model
of our DGP (L=3) classification model in the weakly supervised learning is depicted in Figure 1.

2.3 Inference with Black-box α-divergence (BB-α)

We train the model, including the inducing variables u = {ul}Ll=1, the inducing pointsZ = {Zl}Ll=1

and the ARD covariance parameters θ = {θl}Ll=1, in the framework of power EP. We approxi-
mately calculate the posterior distribution over the inducing variables, i.e., q(u) ≈ p(u|X,y) ∝
p0(u)

∏N
i=1 p(yi|u,Xi), where p0(u) =

∏L
l=1N (ul|0,Kl

uu). We assume the approximate poste-
rior q(u) to be also Gaussian, i.e., q(ul) = N (ul|ml,Σl), where l = 1, ..., L. Since the number
of total image patches in the training data can be massive, the standard power EP [13], which is a
batch algorithm, might not be applicable to TMB prediction from WSIs. In this work, we consider
BB-α approaches [8, 12] which directly optimize the free energy function (derived in the framework
of power-EP) using stochastic gradient descent. In particular, we apply the approximate version of

2



xij h1

ij h2

ij

Ni

N

yi

u
1

u
2

W

h3

ij

u
3

f i

Figure 1: Probabilistic graphical model of the DGP classifier in the weakly supervised learning (L=3).
The double-lined represents a deterministic node (the mean pooling) and h3ij is the same as f(xij).

BB-α proposed in [12] to infer q(u), due to its simpler form compared to the original version [8].
The BB-α energy function of our model with a mini-batch samples S can be given by

Lα(q) = KL[q||p0]− N

α|S|
∑
i∈S

logEq
[
pα(yi|Xi, f i)

]
, (6)

where the first term is Kullback-Leibler (KL) divergence between two distributions and can be
analytically calculated in our case (q and p0 are both Gaussian). The objective function (6) can
be understood as a regularized loss minimization: the KL term and the second expectation term
correspond to regularization and data fitting, respectively. Note that the expectation in the second
term can be approximately computed using the probabilistic back-propagation [9] as in [4], where
a Gaussian is propagated through a layer, this non-Gaussian output distribution is approximated
again as a Gaussian before being fed to the next layer and these steps are repeated until reaching the
last layer. Detailed derivations to compute this expectation are provided in Appendix. Finally, the
parameters Z and θ are also jointly optimized with the approximate posterior q as in [7].

3 Experimental results

We tested our method on the TCGA bladder cancer dataset. A cohort of 386 bladder cancer patients
with 457 diagnostic H&E stained WSIs were downloaded from the TCGA data portal. Based on [1]
which shows the link between the TMB status of the patients and their immunotherapy response in
urothelial carcinoma (the patients are divided into 4 quartile groups according to their TMB values
and the top quartile group shows better survival outcomes compared to the others), we selected the
top 25% TMB-high patients as the positive group and the bottom 25% TMB-low patients as the
negative group. We calculated features from each image patch of a WSI with a deep neural network
trained on ImageNet [16]. The following are some statistics of the data. The number of the total
WSIs is N = 189 (#positive: 94 and #negative: 95), the average number of image patches per WSI is
495.354, and the dimensionality of the input features is D = 2, 048.

#layers (L) α = 1 (EP) α = 0.5 α = 10−6 (VI)
L=1 0.723 (0.016) 0.723 (0.019) 0.724 (0.016)
L=2 0.722 (0.016) 0.723 (0.021) 0.720 (0.016)
L=3 0.736 (0.017) 0.740 (0.014) 0.745 (0.028)

Table 1: The predictive performance (AUC) of our method with different α values, 0, 0.5 and 10−6

(≈ 0) on the TCGA bladder cancer WSIs data. We reported the mean and standard deviation (in
parentheses) of the AUC values from 10 experiments (5-fold CV). There is clear improvement in the
performance compared to the base-line method, SVM+PCA [16], which scored 0.649 (0.013).

For our DGP model, we set the number of inducing points in each layer to 50, the dimensionality of
the linear projection D̃ to 64 and the dimensionality of the output of each layer, i.e., hlij , to 5 when
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L > 1. To ensure the positive definite of the covariance matrix of the approximate posterior, e.g., Σl

in q(ul) = N (ul|ml,Σl), it was assumed to be a form of Σl = V V > + cI , where V ∈ R50×20

and c = 10−3. We randomly drew 20 samples for each mini-batch set |S| = 20. The KL term in the
objective function (6) is considerably larger compared to the second term (data fitting) for a dataset
which consists of a small number training samples. For simplicity, we ignored the KL term and used
the early stopping technique to prevent overfitting (the algorithm was stopped at 500 iterations). We
also tried a schedule for the KL term (a time varying constant γ was multiplied by the KL term, and
γ was set to 0 until the iteration reached 200 and 1e-4 later), but the results were not significantly
different. We implemented our DGP model in Python with TensorFlow.

We compared our method with a baseline method proposed in [16], where feature vectors from all the
image patches of an image are first combined into a single feature vector and then this combined vector
is fed into a SVM (with a rbf kernel) classifier after reducing the input dimensionality using PCA. We
refer to this approach as SVM+PCA. We evaluated the performance of each method in terms of area
under ROC curve (AUC). We repeated random 5 fold cross-validation (CV) 10 times and report the
mean and standard deviation of AUC values (for our method, we considered α = 1.0, 0.5, 0.0 and
L = 1, 2, 3 in Table 1). We can see that in our experiments the DGP model, no matter the α value
and number of layers, always outperforms SVM+PCA. Although the performance is not significantly
different across the cases, the DGP models with L = 3 showed the best performance.

4 Conclusion

We have proposed a DGP-based classification model for TMB prediction from WSIs. The prediction
problem is naturally formed in the weakly supervised learning setting because a super resolution WSI
has to be decomposed into multiple small image patches and a final prediction on the image is made
by aggregating prediction results from all the image patches of the image. We apply a DGP to model
the score function which evaluates TMB status of each image patch of an image. Using the mean
pooling aggregation function, we could easily calculate the expectation of the likelihood of each
sample with respect to the approximate posterior distributions using a forward pass of probabilistic
propagation, which leads an efficient inference algorithm based on BB-α approaches. We have shown
from the TCGA bladder cancer WSI data that our method outperforms the base-line method.

The current version of the paper provides preliminary experiment results: we include experimental
results from only one data set. We plan to test our method on WSIs obtained from different cancer
types and to compare our method with other base-line methods, including deep neural networks or
multiple instance learning methods. In addition, we currently built the model from predefined input
features, not directly from image pixels. However, the image features calculated from the pretrained
neural network might not be relevant to TMB prediction. One possible solution is to extend our
model to include convolutional structures (layers) so that the model can learn discriminative features
for TMB prediction directly from images, as similarly done in [2, 15, 11].
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Appendix

How to compute the expectation in (6)

The expectation in the second term in (6) can be written as follows

Eq
[
pα(yi|Xi, f i)

]
=

∫
pα(yn|f i)

∫
p(fLi |u)q(u)du dfLi , (7)

where fLi are the final function values evaluated at all the image patches of the ith image, i.e., fLi =

[fL11, ..., f
L
1Ni

]>, where fL11 = fL(hL−111 ), and fL is the final output function defined in the last layer
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of the L-layered DGP. With abuse of notation, we can redefine the mean pooling as f i = 1
Ni

∑Ni

j=1 f
L
ij .

We first consider the inner integration in (7), and assume that the marginal distribution over fLi (after
integrating the including variables u out) is fully factorized, i.e., q(fLi ) =

∏Ni

j=1N (fLij |mL
ij , v

L
ij).

Note that the distribution of each factor fLij is approximated by a Gaussian whose mean and variance,
mL
i j and vLi j, are calculated using the exact same method in [4] which is based on the forward pass

of probabilistic propagation (for more details, please see Section 5 in [4]). Once all the means and
variances, {mL

ij} and {vLij}, are calculated, the approximate marginal distribution over f i can be
given as q(f i) = N (f i|mL

i , v
L
i ), where mL

i = 1
Ni

∑Ni

j=1m
L
ij and vi = 1

N2
i

∑Ni

j=1 v
L
ij . As a result,

the expectation (6) can be calculated as follows

Eq
[
pα(yi|Xi, f i)

]
≈
∫
pα(yn|f i)q(f i)df i =

∫
Φα
(
yif i

)
N (f i|mi, vi)df i. (8)

When α = 1, the last integration allows a closed form, i.e., Eq
[
pα(yi|Xi, f i)

]
≈ Φ

(
yimi√
vi+1

)
. For

α 6= 1, we need numerical methods to approximate the integration in (8). However, it involves
just a 1D integration, and there are many efficient numerical tools available, such as Gauss-Hermit
quadrature.
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