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Abstract

Attention mechanism stands as the key technique to the success of many deep-
learning models. The multi-head attention extends single-head attention by allow-
ing a model to jointly focus on information from different perspectives. Without
explicit constraints, however, multi-head attention may suffer from attention col-
lapse in the sense that several heads might attend to the same information, thus
losing representation power. In this paper, for the first time, we provide a novel un-
derstanding of multi-head attention from a Bayesian-sampling perspective. Based
on particle-optimization sampling methods, we further propose non-parametric
approaches that explicitly improve the diversity of multi-head attention, which
could strengthen a model’s expression ability. We apply our framework to four
representative models with multi-head attention, including the Transformer and
Graph Attention Networks, and evaluate it on six different tasks. Experimental re-
sults show that our framework can significantly improve the diversity of multi-head
attention, leading to performance improvement on all the tasks considered.

1 Introduction

Attention is one of the most popular and effective modules in deep learning neural networks, with
impressive performances gains in many tasks. By extending a single head to multiple paralleled
heads of attention, multi-head attention is widely used to capture different attentive information and
strengthen the expressive ability of a model. The key point of multi-head attention is its ability to
jointly attend to information from different representation subspaces at different positions. However,
there are no explicit mechanisms guaranteeing this desired property, thus it could potentially lead to
attention redundancy or collapse. Although there exist works by directly adding regularization on
loss functions to encourage diversity of multi-head attention [1, 2], the underlying working principle
has not been well-validated, and improvement has not been significant.

In this paper, we provide a principled and more interpretable solution for this problem from a Bayesian
perspective. In order to incorporate uncertainty in attention, we propose to adapt the deterministic
attention to a stochastic setting. Consequently, multi-head attention could be understood as multiple
Bayesian samples that approximate a posterior attention distribution. To further introduce repulsive-
ness into attention heads, we adopt the particle-optimization sampling methods by viewing each head
as a particle and jointly updating their weights to approximate a multimodal posterior distribution
of the attention. With this, multi heads are enforced to move to different modes in the parameter
space, thus improving the diversity in multi-head attention and enhancing their expressiveness power.
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We call our framework repulsive multi-head attention. Experiments on various attention models
demonstrate the effectiveness of our approaches.

2 Repulsive Bayesian Attention

This section describes our framework on Bayesian modeling of diversified attention. For completeness,
an introduction of standard attention mechanisms is presented in Appendix A, including the two most
commonly used attention functions, the additive attention and dot-product attention.

2.1 Understanding Multi-Head Attention from a Bayesian-Inference Perspective

Consider the simplest case of self attention with a single head. As described in Appendix A, the
attention mechanism can be represented as a deterministic mapping, fatt, from an input space to
an output attention feature space, e.g., z = fatt(x; θ) with θ the parameter of the mapping. In this
example, fatt could represent an additive attention or a dot-product attention. Since z is deterministic,
it lacks the ability to model and propagate uncertainty in attention modeling. To overcome this
problem, we propose to adapt the deterministic attention to a stochastic version with Bayesian
modeling.

Multi-head attention as hierarchical Bayesian modeling In our framework, instead of modeling
attention as a deterministic transformation z = fatt(x; θ), we consider it as a hierarchical stochastic
generative process: z ∼ p(z|x; θ), where the posterior for the parameter θ, p(θ|D) ∝ p(D|θ)p(θ),
serves as the prior for the parameter of the attention feature z. Bayesian inference for attention then
computes the predictive distribution p(z|x,D) of the attentive latent representation z for an input x
given the training data D by:

p(z|x,D) =

∫
p(z|x; θ)p(θ|D)dθ . (1)

Note a caveat of such a generalization is that it makes backpropagation used in standard attention
mechanism difficult, due to the sampling operator z ∼ p(z|x; θ) in the internal node. To overcome
this problem, instead of adopting the potentially complicated variational inference technique, we
propose a simple workaround by reformulating Equation (1) with a set of M samples from p(θ|D),
i.e., we define the sampling process for z as the following generative process:

z = g(z1, ...,zM ), where
θi ∼ p(θ|D), zi = fatt(x) . (2)

Here g(·) is an aggregate function such as a linear projection. We can see that the above equation
reduces to the multi-head attention when the parameters θi’s are independent instead of being drawn
from a shared prior p(θ|D). Thus, multi-head attention could be understood as a special case of the
stochastic attention with independent parameter priors. In the next section, we introduce Bayesian
sampling techniques to enforce repulsiveness to the parameters θi’s. The repulsiveness could then be
propagated to make the attention features zi’s diverse.

2.2 Repulsive Multi-Head Attention

We adopt the recently proposed particle-optimization sampling techniques [3, 4] to generate repulsive
samples of the attention parameters. Generally speaking, particle-optimization sampling interactively
updates a set of particles to approximate a target distribution by leveraging the optimal transport
theory. To apply particle-optimization to multi-head attention, the parameter of every head θi is
considered as a particle, which, according to (2), is a sample from the posterior distribution p(·|D).
With a total of M heads {θi}Mi=1, we are able to well approximate the distribution p(θ|D), which
are updated interactively according to some particle-optimization rules described later. In this way,
multi-head attention modeling is equivalently transformed to a Bayesian inference problem. In this
paper, we utilize two representative particle-optimization sampling algorithms: Stein Variational Gra-
dient Descent (SVGD) [5] and Stochastic Particle-Optimization Sampling (SPOS) [4], for posterior
inference. Details of these two methods are described in Appendix B.

To achieve repulsive multi-head attention, we only need to modify the learning process of attention
parameters with particle-optimization sampling methods as shown in Algorithm 1, while keeping
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Algorithm 1 Diversified Multi-Head Attention
Input: Initialized M -head attention model A with attention parameters Θ0 = {θi}Mi=1 and other
parameters Ω0; Training data D = {Dk}Nk=1 = {(xk, yk)}Nk=1;
Output: Optimized attention model with learned parameters Θ̂ and Ω̂;
Train:

for iteration ` do
forward: ŷk = A(xk; Θ`,Ω`),∀k;
calculate loss: L({ŷk}, {yk});
backward and calculate gradients:
gradient of Ω`: ϕ(Ω`)← ∇Ω`

L
for attention head i do

calculate φ(θ
(i)
` ) with SVGD (Eq (7)) or SPOS (Eq (8));

gradient of θ(i)
` :ϕ(θ

(i)
` )← ε`φ(θ

(i)
` );

end for
update parameters:
Ω`+1 ← Optimizer(Ω`, ϕ(Ω`))
Θ`+1 ← Optimizer(Θ`, ϕ(Θ`))

end for

model architectures unchanged. To be specific, in standard multi-head attention, the parameter of
every head is updated independently according to the corresponding gradient of the loss function.
To achieve repulsive multi-head attention, we follow the particle-optimization sampling update rule
(e.g. Equation 7 or Equation 8) to update the parameter of every head interactively, while updating
other parameters in the same way as standard multi-head attention. Equation 7 and 8 can be seen as a
modified gradient with explicit repulsive intention and can be applied with any optimizer, e.g., Adam
[6]. Note that ∇

θ
(i)
`

U(θ
(i)
` ) equals to the gradient of the θ(i)

` in standard multi-head attention when

negative log-likelihood is defined as the loss function and the prior of θ(i) is assumed to be uniform.
In practice, the update of M heads is parallel conducted with matrix operations.

3 Experimental Results

We apply our framework to four representative attention-based models. Experiments are conducted on
six different tasks including author profiling, sentiment classification, textual entailment, translation,
scientific publication classification and text generation. Extensive experimental results show that our
approach can significantly improve the diversity in multi-head attention and strengthen the expression
ability of original models, leading to consistent performance improvement in all the tasks considered.

3.1 Self-attentive Sentence Embedding Model

Self-attentive sentence embedding model [1] combines BiLSTM with multi-head attention to generate
the sentence embedding matrix for specific tasks. We build a model containing 30-head self-attention
following [1] and apply particle-optimization approach (SVGD and SPOS) to parameters of multi-
head attention. All three tasks in [1] including author profiling, sentiment analysis and textual
entailment are evaluated with the Age, Yelp, and SNLI datasets respectively. Author profiling is to
predict the age range of the user by giving their tweets. Sentiment analysis is to predict the number
of stars the user who wrote that review assigned to by analysis their reviews. Textual entailment is to
tell whether the semantics in the two sentences are entailment or contradiction or neutral.

Results are presented in Table 1. With the proposed repulsive multi-head attention, the model achieves
much higher accuracy on all three tasks, especially on the sentiment analysis task, yielding a 2.3%
improvement. Our approaches also outperform the regularization method in [1], which penalize
Frobenius norm of multi-head attention to introduce diversity. For particle-optimization rules,
comparing with SVGD, with the help of additional noise, SPOS appears to get better performance.

Visualization of attention is shown in Figure 1 which serves as an interpretation of the learned
sentence embedding. All 30 heads are depicted in one heatmap yielding a general view of what the
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Table 1: Performance (accuracy) comparison on Yelp, Age and SNLI dataset
Models Yelp Age SNLI
BiLSTM + Multi-head Attention [1] 69.3% 81.47% 83.79%
BiLSTM + Multi-head Attention + Penalization [1] 70.2% 81.30% 84.55%
BiLSTM + Repulsive Multi-head Attention (SVGD) 71.2% 81.82% 84.58%
BiLSTM + Repulsive Multi-head Attention (SPOS) 71.7% 82.55% 84.76%

(a) Multi-head attention

(b) Repulsive multi-head attention

Figure 1: Heatmap of a 1 star Yelp review. The red mark indicates the weight of corresponding word
in sentence embedding. The deeper the red, the more important the word is for sentiment analysis.
Perspectives of 30 heads are depicted in one heatmap.

sentence embedding mostly focuses on. The text is a 1-star review in the Yelp dataset. As shown in
Figure 1, the original multi-head attention tends to incur mode collapse, where almost all heads focus
on one single factor. On the contrary, repulsive multi-head attention is able to capture multiple key
factors in the review that indicate strongly on the sentiment behind the sentence. More examples can
be found in Appendix D.

3.2 Transformer

Transformer is a representative model entirely relying on the multi-head attention. We evaluate our
approach on Transformer with two standard translation datasets: IWSLT14 De-En and WMT14
En-De. The details of the Transformer model are given in Appendix C. To apply repulsive multi-head
attention on Transformer, we modify all the multi-head self-attention in encoder and decoder as well
as multi-head inter-attention between encoder and decoder to be repulsive. Parameters of every head
are together seen as a particle, and we apply SVGD particle-optimization to all heads in all layers.
Results are presented in Table 2, which show that, with the repulsive multi-head attention, Transformer
models achieve a remarkable improvement on the BLEU score in both datasets. Furthermore, it is
encouraging to see that Transformer-base with repulsive multi-head attention achieves comparable
performance with Transformer-big, while the parameters are much less.

Table 2: Translation performance (BLEU) comparison
Models IWSLT14 De-En WMT14 En-De
Transformer-small [7] 34.4 /
Transformer-base [7] / 27.3
Transformer-big [7] / 28.4
Transformer-small + Repulsive Multi-head Attention 35.2 /
Transformer-base + Repulsive Multi-head Attention / 28.4
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Table 3: Performance (accuracy) comparison on Cora dataset
Models Cora
Graph Attention Network [8] 83.0 ± 0.7%
Graph Attention Network + Repulsive Multi-head Attention(SVGD) 85.1 ± 0.8%
Graph Attention Network + Repulsive Multi-head Attention(SPOS) 85.3 ± 0.8%

Table 4: Automatic evaluations of generation systems
Models BLEU METEOR
GAT [9] 12.2± 0.44 17.2± 0.63
GraphWriter [9] 14.3 ±1.01 18.8 ± 0.28
GraphWriter + Repulsive Multi-head Attention 15.1 ± 0.97 19.5 ± 0.29

3.3 Graph Attention Networks

Graph data are particularly useful in real world to represent irregular structure such as 3D meshes,
social networks and brain connectomes. To learn the representation of graph-based data, attention
mechanism is also widely used. A typical model is Graph Attention Networks (GAT) [8] which
leverage masked multi-head self-attention to pass messages along graphs. By stacking multi-head
attention layers in which nodes are able to attend over their neighborhoods’ features, the model
enables implicitly specifying different weights to different nodes in different subspaces. The attention
in GAT is in the form of dot-product attention. We follow the model configuration in [8] and adapt the
multi-head attention to the repulsive attention. Experiments are conducted on the Cora dataset, which
represents a citation network consisting of 2708 scientific publications classified into seven classes.
The task is node classification. Results are shown in Table 3, which shows that the GAT model with
repulsive multi-head attention outperforms the original model by 2% in accuracy, demonstrating the
effectiveness of our framework.

3.4 GraphWriter

Finally, we evaluate our framework on a more complicated task of generating coherent multi-sentence
texts from a knowledge graph. To be specific, the task is to generate a text abstract given the title of a
scientific article and a knowledge graph encoding annotations. We build on the graph-to-text model
named GraphWriter [9], which contains dot-product multi-head attention. We modify the model
with repulsive multi-head attention, and get results as shown in Table 4. Similarly, the GraphWriter
model with repulsive multi-head attention outperforms the original model in terms of both BLEU and
METER scores.

4 Conclusion

In this paper, motivated by uncertainty modeling of attention, we propose a principled way of
understanding multi-head attention from a Bayesian-modeling perspective. Based on existing particle-
optimization sampling techniques, we propose a simple yet efficient way to modify multi-head
attention to be repulsive without additional parameters nor regularizers. Experimental results on six
tasks demonstrate that our framework can significantly improve the diversity of multi-head attention,
leading to performance improvement on all the tasks considered.
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Appendix A Multi-head Attention

Attention mechanism aims at modelling dependencies of representation pairs on different positions
without regard to their distance. The attention could be between two different sequences such as
two sentences of different languages, or inside a sequence which is called self-attention (also called
intra-attention). The two most commonly used attention functions are additive attention [1, 10] and
dot-product attention (also called multiplicative attention) [7]. We specify multi-head attention in
these two kinds of attention.

Additive Attention First proposed by [10], additive attention uses a one-hidden layer feed-forward
network to calculate the attention alignment. We use the attention function in [1] which is also a
self-attention as an example.

a = Softmax(vT tanh(WHT )), z = aH (3)

H ∈ Rn×d is the hidden state matrix of a sentence with n words. a ∈ R1×n is the normalized
alignment score vector for each word. W ∈ Rda×d and v ∈ Rda×1 are attention parameters.
The final sentence representation vector z is a weighted sum of words’ hidden states weighted by
attention vector. In order to capture overall semantics of the sentence instead of a specific component,
multi-head attention could be applied.

A = Softmax(V T tanh(WHT )), Z = AH (4)

where V ∈ Rda×r is the matrix performs r heads, A ∈ Rr×n is the r-head attention matrix and
Z ∈ Rr×d is the resulting sentence representation matrix contains semantics from multiple aspects.

Dot-product Attention Transformer [7] is an architecture based on multi-head scaled dot-product
attention. The attention function for a single head can be described as mapping a query and a set of
key-value pairs to an output as

Ai = Softmax(
QiK

T
i√

dk
), Zi = AiVi (5)

where Qi = QWQ
i ,Ki = KWK

i , Vi = VWV
i

{WQ
i ,W

K
i ,W

V
i } are parameters of i-th head. r-head attention projects the queries, keys and values

into r subspaces with different, learned linear projections. Attention functions of all heads are
performed in parallel and are concatenated and once again projected, resulting in the final values.

Z = Concate(Z1, ..., Zi, ..., Zr), MultiHead(Q,K, V ) = ZWO (6)

Appendix B Particle-optimization Sampling Methods

In general, particle-optimization sampling is to interactively updates a set of particles to approximates
a distribution. In this paper, we utilize the following two representative particle-optimization sampling
algorithms.

Stein Variational Gradient Descent (SVGD) Considering D = {Dk}Nk=1 is a set of i.i.d. ob-
servation, x ∈ Rd is a continuous random variable or parameter of interest with prior p0(x).
In Bayesian sampling, we aims to generate random samples from the posterior distribution
p(x|D) ∝ p(D|x)p0(x). Define the potential energy as U(x) , − log p(D|x) − log p0(x) =

−
∑N
k=1 log p(Dk|x)− log p0(x), the posterior distribution is p(x|D) ∝ exp(−U(x)).

SVGD [5] iteratively and interactively transports a set of particles {x(i)}Mi=1 to match the target
distribution, by applying a form of functional gradient descent that minimizes the KL divergence.
The update rule for particles {x(i)

` }Mi=1at the `-th iteration with stepsize ε` is

x
(i)
`+1 = x

(i)
` + ε`φ(x

(i)
` ) (7)

where φ(x
(i)
` ) =

1

M

M∑
j=1

[−κ(x
(j)
` ,x

(i)
` )∇

x
(j)
`

U(x
(j)
` ) +∇

x
(j)
`

κ(x
(j)
` ,x

(i)
` )]
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κ(·, ·) is a positive definite kernel e.g. the RBF kernel. The two terms in φ play different roles: the
first term drives the particles towards the high probability areas of p(x|D) by following a smoothed
gradient direction, which is the weighted sum of the gradients of all the points weighted by the kernel
function. The second term acts as a repulsive force that prevents all the points to collapse together
into local modes of p(x|D).

Stochastic Particle-Optimization Sampling (SPOS) Though obtaining significant empirical suc-
cess, under certain conditions, SVGD experiences a theoretical pitfall, where particles tend to collapse.
To overcome it, based on unified particle-optimization framework [3], [4] generalize POS to a stochas-
tic setting by injecting random noise into particle updates. The update rule for particles {x(i)

` }Mi=1 in
(7) change to

φ(x
(i)
` ) =

1

M

M∑
j=1

[−κ(x
(j)
` ,x

(i)
` )∇

x
(j)
`

U(x
(j)
` ) +∇

x
(j)
`

κ(x
(j)
` ,x

(i)
` )] (8)

− β−1∇
x

(i)
`

U(x
(i)
` ) +

√
2β−1ε−1

` ξ
(i)
`

where ξ(i)
` ∼ N (0, I) is the random Gaussian noise that would enhance the ability of the algorithm

to jump out of local modes, leading to better ergodic properties compared to standard SVGD. The
non-asymptotic convergence of SPOS is proved by [4].

Appendix C Experiment Details

For all our experiments, RBF kernel κ(x, y) = exp(− 1
h‖x − y‖22) with the bandwidth h =

med2/ logM is used as the kernel function, where med denotes the median of the pairwise distance
between current particles. Please find details of the datasets and experiments in Appendix C.

Author Profiling The Author Profiling task is to use tweets from Twitter as input to predict the age
range (18-24, 25-34, 35-49, 50-64, 65+) of the user. We use the same Age dataset as in [1] which
contains 68485 tweets as training set, 4000 as development set, and 4000 as test set.

Sentiment Analysis Yelp dataset consists of 2.7M yelp reviews is used for sentiment analysis task.
We take the review as input and predict the number of stars the user who wrote that review assigned
to the corresponding business store. As in [1], we randomly select 500K review-star pairs as training
set, and 2000 for development set, 2000 for test set. Different from [1], we use Spacy toolkit as
tokenizer and GloVe (GloVe 840B 300D) as pretrained word embedding.

Textual Entailment The SNLI corpus [11] is used for this task. It is a collection of 570k human-
written English sentence pairs manually labeled for balanced classification with the labels {entailment,
contradiction, neutral}. The model will be given a pair of sentences, called hypothesis and premise
respectively, and asked to tell if the semantics in the two sentences are entailment or contradiction or
neutral. We applied the standard train (550k)/ validation (10k) / test (10k) split in this paper.

Transformer Experiments on Transformer are conducted on two widely used public datasets:
IWSLT14 German-to-English (De-En) and WMT14 English-to-German (En-De) dataset. For the
WMT14 dataset, we follow the base setting of Transformer in [7] which consistes a 6-layer encoder
and a 6-layer decoder. The size of the hidden nodes and embeddings is 512 and the number of heads
is 8. IWSLT14 dataset is much smaller than the WMT14 dataset, so we use the small setting of
Transformer, whose size of hidden states and embeddings is set to 512 and the number of heads
is set to 4. Our implementation is based on the open-sourced fairseq code base and follows the
hyperparameter settings in [7].

Graph Attention Networks We completely follow the model structure in [8] and evaluate our
approach on Cora dataset. The Cora dataset contains 2708 nodes, 5429 edges, 7 classes and 1433
features per node. As in [8], we use 140 nodes for training, 500 for validation and 1000 for testing.
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GraphWriter Experiments are conducted on the Abstract GENeration DAtaset (AGENDA), a
dataset of knowledge graphs paired with scientific abstracts. Our dataset consists of 40k paper titles
and abstracts from the Semantic Scholar Corpus taken from the proceedings of 12 top AI conferences.
We use the standard split of AGENDA dataset in our experiments: 38,720 for training, 1000 for
validation, and 1000 for test.

Appendix D Visualization of Multi-head Attention

(a) Example 1

(b) Example 2

(c) Example 3

Figure 2: Heatmap of Yelp reviews with original multi-head attention
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(a) Example 1

(b) Example 2

(c) Example 3

Figure 3: Heatmap of Yelp reviews with repulsive multi-head attention
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