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Abstract

Applying Bayesian inference to neural networks often requires approximating the
posterior over parameters with simple distributions. The quality of the resulting
approximate predictive distribution in function space is poorly understood. We
prove that for single hidden layer ReLU networks, there exist simple situations
where it is impossible for factorised Gaussian or MC dropout posteriors to give well-
calibrated uncertainty estimates. Precisely, they cannot both fit the data confidently
and have increased uncertainty in between well-separated clusters of data. This
motivates more careful consideration of the consequences of approximate inference
in Bayesian neural networks.

1 Introduction

In many domains, quantifying uncertainty is critical for the successful application of machine learning
methods. For example, in medical applications, calibrated predictive uncertainty is necessary to
determine which patients should be referred to an expert for further tests [6]. In reinforcement
learning, good uncertainty estimates are important for balancing exploration and exploitation [4].
Bayesian neural networks (BNNs) hold the promise of being powerful function approximators that
return reliable uncertainty estimates. However, the need to resort to approximate inference casts
doubt on the quality of their predictive uncertainty and limits their practical utility [27].

Many approximate inference methods (e.g. mean-field variational inference (MFVI) [14; 11; 2],
probabilistic backpropagation (PBP) [12], Laplace’s approximation [5; 20; 24] and Monte Carlo
(MC) dropout [10]) assume a specific parametric form for the approximate posterior. We refer to
the set of approximating distributions considered by the method as the approximating family. For
example, in MFVI and the diagonal Laplace approximation, the approximating family is the set
of fully factorised Gaussian distributions over the parameters of the network. In MC dropout, the
approximating family is defined by multiplying columns of the weight matrices by independent
Bernoulli random variables.

As the approximating family is usually chosen for computational expediency, it is often a crude
approximation to the exact posterior in parameter space. It is hoped that the resulting predictive
distribution in function space still has the qualitative features necessary for the task at hand. However,
empirically approximate inference in BNNs frequently fails to represent ‘in-between’ uncertainty: that
is, increased uncertainty in between well-separated clusters of data [7; 27]. A potential consequence
of this pathology is that in medical applications, a BNN will be unjustifiably confident between
regions contained in the training data, and hence fail to refer ambiguous cases to an expert. In this
work, we explain this behaviour by proving fundamental limitations of the factorised Gaussian and
MC dropout approximating families.
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2 Theoretical Results

Our main results apply to single-hidden layer ReLU BNNs. They show that there are regions of input
space where mean-field Gaussian and MC dropout BNNs are incapable of representing in-between
uncertainty. More general statements of these theorems can be found in appendix A.
Theorem 1 (Mean-field Gaussian). Consider a single-hidden layer ReLU neural network mapping
from x ∈ RD to f(x) ∈ RK with an arbitrary number of hidden units. Suppose we have a fully
factorised Gaussian distribution over the weights and biases in the network. Consider any points
p,q, r ∈ RD such that r ∈ −→pq and either:

i. The line segment −→pq contains 0 and r is closer to 0 than both p and q.

ii. The line segment −→pq is orthogonal to and intersects the plane [x]d = 0, and r is closer to the
plane [x]d = 0 than both p and q.

Then for 1 ≤ k ≤ K, Var[fk(r)] ≤ Var[fk(p)] + Var[fk(q)].

Theorem 1 states that there are line segments in input space such that the predictive variance on
the line is bounded in terms of the variance at the endpoints. It illustrates a limitation of the
approximating family and is agnostic to inference method or optimisation procedure. This family has
been used in the diagonal Laplace approximation [5; 24], variational inference (VI) [14; 11; 2], PBP
[12], variational Gaussian dropout [16], stochastic expectation propagation [18], black-box alpha
divergence minimisation [13], Rényi divergence VI [19], natural gradient VI [15] and functional
variational BNNs [25].2 The bound in theorem 1 applies to all of these techniques, for any setting of
the parameters of the distribution, and therefore for any training dataset. In particular, for VI this
bound applies for the global minimiser of the KL-divergence between the approximate posterior and
the true posterior.
Theorem 2 (MC dropout). Consider the same network architecture as in theorem 1. Suppose we
have an MC dropout distribution over the parameters in the network. Then for any finite set of points
S ⊂ RD such that 0 is in the convex hull of S, Var[fk(0)] ≤ max

s∈S
{Var[fk(s)]} for 1 ≤ k ≤ K.

Theorem 2 upper bounds the predictive variance at the origin by the variance at points surrounding
it. It applies to any MC dropout posterior [10; 22] regardless of training dataset, regularisation or
optimisation procedure.

3 Illustrative Examples

As the output variance is a measure of epistemic uncertainty, our theorems imply pathological
behaviour when the variance bounded should be high (because there is little data there), and the
variances determining the upper bound should be low (because there is a lot of data there).

For theorem 1, case i, consider a dataset where the input density p(x) is essentially bimodal, e.g. if
there are two distinct populations in the training set, and the training data is centred at the origin (as
is standard practice). Then p and q could be taken at locations within the clusters, and −→pq would
intersect the origin. This is illustrated on a synthetic regression dataset3 in figure 1. Theorem 1, case
ii applies when the training inputs share values along all but one input dimension. This would happen
if training inputs are chosen by some experimental procedure where input features are varied one at a
time. This is illustrated in appendix B. Theorem 2 is relevant to any centred dataset since the origin
will be in the convex hull of the datapoints. The variance at the origin can be upper bounded by the
maximum over any subset of datapoints, such that the convex hull of these points still contains the
origin. This is illustrated in figure 1.

The approximate posterior obtained by MFVI on a single hidden layer ReLU BNN with 50 hidden
units (left) is able to represent uncertainty outside of the region containing data, but not in between
the two clusters of data. MC dropout (centre) is similarly unable to show in-between uncertainty,
as it is more confident at the midpoint of the data clusters than it is at the clusters themselves. In

2Not all these methods necessitate the use of fully factorised Gaussians, but it is a common choice.
3While we consider the case of regression, our theorems apply equally to the latent function of a classifier

(input to the softmax).
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Figure 1: MFVI BNN (left), MC dropout BNN (centre) and GP with a kernel corresponding to
the wide limit of the same BNN (right), fit on a regression dataset with 2-dimensional inputs (red
crosses). The top plots show the standard deviation of the output in different regions of input space.
The bottom plots show the predictive mean with two standard deviation bars along the dashed white
line in the top plot. Note MFVI’s overconfidence in the region λ ∈ [−1, 1]. This behaviour is
explained by theorem 1: given the uncertainty is near zero at the data clusters, there is no setting of
the variational parameters that could have the uncertainty significantly greater than zero in the line
segment between them. MC dropout is underconfident at the datapoints and overconfident near the
origin. The overconfidence is explained by theorem 2.

contrast, the Gaussian Process (GP) posterior with the equivalent BNN kernel [3] (right) shows
increased uncertainty both in between and outside of the observed data. Since GP inference is exact,
and the BNN prior approaches the GP prior as the number of hidden units increases [23; 21], we
expect the BNN posterior to be qualitatively similar to the GP posterior. The GP posterior shows
in-between uncertainty but the BNN approximate posteriors do not, implying that this is a failure of
the approximate posterior and not the true BNN posterior.

4 Discussion

The single hidden layer ReLU BNN regression task has been extensively used as a benchmark in
the Bayesian deep learning community [12; 18; 19; 26; 15; 25; 10; 22]. Many of these experiments
use the mean-field Gaussian and MC dropout approximating families. Since our results indicate all
members of these families share a simple pathology, this benchmark is inadequate to evaluate the
quality of the inference algorithms. Furthermore, our results demonstrate a case where approximate
inference provably leads to extreme overconfidence, even with access to an idealised global optimiser.
When designing methods, practitioners should consider whether the approximate posterior is able to
represent the type of uncertainty required for the task at hand.

Theorems 1 and 2 only apply to single hidden layer BNNs. In contrast, for 2-hidden layer BNNs there
exist mean-field Gaussian parameter distributions that can approximate any continuous predictive
mean and variance function (see appendix F). However, [7] observed empirically that MFVI still
struggles to represent in-between uncertainty in deeper networks. This illustrates that even though
an approximating family contains distributions with desirable properties in function space, this is
insufficient to guarantee that an approximate inference method will select those distributions. Theo-
rems 1 and 2 make no assumptions on the method for selecting a distribution from the approximating
family. We leave as future work the task of understanding the interaction between the choice of
approximating family and the inference algorithm.

3



Acknowledgements

We would like to thank José Miguel Hernández-Lobato, Sebastian W. Ober and Ross Clarke for
helpful discussions. AYKF gratefully acknowledges the Trinity Hall Research Studentship and the
George and Lilian Schiff Foundation for funding his studies.

References
[1] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions: with formulas, graphs,

and mathematical tables, volume 55. Courier Corporation, 1965.

[2] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural
networks. In Proceedings of the 32nd International Conference on Machine Learning (ICML),
2015.

[3] Y. Cho and L. K. Saul. Kernel methods for deep learning. In Advances in Neural Information
Processing Systems (NIPS)22, 2009.

[4] M. Deisenroth and C. E. Rasmussen. PILCO: A model-based and data-efficient approach to
policy search. In Proceedings of the 28th International Conference on machine learning (ICML),
pages 465–472, 2011.

[5] J. S. Denker and Y. Lecun. Transforming neural-net output levels to probability distributions.
In Advances in Neural Information Processing Systems (NIPS), 1991.

[6] A. Filos, S. Farquhar, A. N. Gomez, T. G. J. Rudner, Z. Kenton, L. Smith, M. Alizadeh,
A. de Kroon, and Y. Gal. Benchmarking Bayesian deep learning with diabetic retinopathy
diagnosis. https://github.com/OATML/bdl-benchmarks, 2019.

[7] A. Y. K. Foong, Y. Li, J. M. Hernández-Lobato, and R. E. Turner. ‘In-between’ uncertainty in
Bayesian neural networks. arXiv preprint arXiv:1906.11537, 2019.

[8] B. J. Frey and G. E. Hinton. Variational learning in nonlinear Gaussian belief networks. Neural
Computation, 11(1):193–213, 1999.

[9] Y. Gal. Uncertainty in deep learning. PhD thesis, University of Cambridge, 2016.

[10] Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In Proceedings of The 33rd International Conference on Machine
Learning (ICML), 2016.

[11] A. Graves. Practical variational inference for neural networks. In Advances in Neural Informa-
tion Processing Systems (NIPS) 24, 2011.

[12] J. M. Hernández-Lobato and R. Adams. Probabilistic backpropagation for scalable learning of
Bayesian neural networks. In Proceedings of the 32nd International Conference on Machine
Learning (ICML), 2015.

[13] J. M. Hernández-Lobato, Y. Li, M. Rowland, T. Bui, D. Hernández-Lobato, and R. Turner.
Black-box alpha divergence minimization. In Proceedings of The 33rd International Conference
on Machine Learning (ICML), 2016.

[14] G. Hinton and D. Van Camp. Keeping neural networks simple by minimizing the description
length of the weights. In Proc. of the 6th Ann. ACM Conf. on Computational Learning Theory.
Citeseer, 1993.

[15] M. E. Khan, D. Nielsen, V. Tangkaratt, W. Lin, Y. Gal, and A. Srivastava. Fast and scalable
Bayesian deep learning by weight-perturbation in Adam. Proceedings of The 35th International
Conference on Machine Learning (ICML), 2018.

[16] D. P. Kingma, T. Salimans, and M. Welling. Variational dropout and the local reparameterization
trick. In Advances in Neural Information Processing Systems, pages 2575–2583, 2015.

4

https://github.com/OATML/bdl-benchmarks


[17] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function. Neural networks, 6(6):861–
867, 1993.

[18] Y. Li, J. M. Hernández-Lobato, and R. E. Turner. Stochastic expectation propagation. In
Advances in neural information processing systems, pages 2323–2331, 2015.

[19] Y. Li and R. E. Turner. Rényi divergence variational inference. In Advances in Neural
Information Processing Systems, pages 1073–1081, 2016.

[20] D. J. C. MacKay. A practical Bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472, 1992.

[21] A. G. d. G. Matthews, M. Rowland, J. Hron, R. E. Turner, and Z. Ghahramani. Gaussian process
behaviour in wide deep neural networks. arXiv preprint arXiv:1804.11271, 2018.

[22] J. Mukhoti, P. Stenetorp, and Y. Gal. On the importance of strong baselines in Bayesian deep
learning. arXiv preprint arXiv:1811.09385, 2018.

[23] R. M. Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012.

[24] H. Ritter, A. Botev, and D. Barber. A scalable Laplace approximation for neural networks. In
International Conference on Learning Representations (ICLR), 2018.

[25] S. Sun, G. Zhang, J. Shi, and R. Grosse. Functional variational Bayesian neural networks. In
International Conference on Learning Representations (ICLR), 2019.

[26] M. B. Tomczak, S. Swaroop, and R. E. Turner. Neural network ensembles and variational
inference revisited. In 1st Symposium on Advances in Approximate Bayesian Inference, pages
1–11, 2018.

[27] J. Yao, W. Pan, S. Ghosh, and F. Doshi-Velez. Quality of uncertainty quantification for Bayesian
neural network inference. arXiv preprint arXiv:1906.09686, 2019.

A General Statement of Theorems

In this appendix we provide a more general statement of our theorems. Note that the mean-field
Gaussian posterior is a special case of the distribution assumed in theorem 1, and the MC dropout
posterior is a special case of that assumed in theorem 2.

Theorem 1 (Mean-field Gaussian). Consider a single-hidden layer ReLU neural network mapping
from RD → RK with I ∈ N hidden units. The corresponding mapping is given by fk(x) =∑I
i=1 wk,iφ

(∑D
d=1 ui,dxd + vi

)
+ bk for 1 ≤ k ≤ K, where φ(a) = max(0, a). Suppose we have

a distribution over network parameters of the form:

q(W,b,U,v)=

I∏
i=1

qi(wi|U,v)q(b|U,v)

I∏
i=1

D∏
d=1

N (ui,d;µui,d
, σ2
ui,d

)

I∏
i=1

N (vi;µvi , σ
2
vi), (1)

where wi = {wk,i}Kk=1 are the weights out of neuron i and b = {bk}Kk=1 are the output biases, and
qi(wi|U,v) and q(b|U,v) are arbitrary probability densities with finite first two moments. Consider
a line in RD parameterized by [x(λ)]d = γdλ + cd for λ ∈ R such that γdcd = 0 for 1 ≤ d ≤ D.
Then for any λ1 ≤ 0 ≤ λ2, and any λ∗ such that |λ∗| ≤ min(|λ1|, |λ2|),

Var[fk(x(λ∗))] ≤ Var[fk(x(λ1))] + Var[fk(x(λ2))] for 1 ≤ k ≤ K. (2)

In assumption i) in the statement of the theorem in the main body, cd = 0 for 1 ≤ d ≤ D. In
assumption ii), γd′ = 0 for d′ 6= d, and cd = 0.
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Figure 2: MFVI BNN (left) and GP with a kernel corresponding to the wide limit of the same BNN
(right), fit on a regression dataset with 2-dimensional inputs (red crosses). The top plots show the
standard deviation of the output in different regions of input space. The bottom plots show the
predictive mean with two standard deviation bars along the dashed white line in the top plot. Note
MFVI’s overconfidence in the region λ ∈ [−.8, .8]. This behaviour is explained by theorem 1.

Theorem 2 (MC dropout). Consider a single-hidden layer ReLU neural network mapping from
RD → RK with I ∈ N hidden units. The corresponding mapping is given by fk(x) =∑I
i=1 wk,iφ

(∑D
d=1 ui,dxd + vi

)
+ bk for 1 ≤ k ≤ K, where φ(a) = max(0, a). Assume v

is set deterministically and

q(W,b,U) = q(U)q(b|U)
∏
i

qi(wi|U),

where wi = {wk,i}Kk=1 are the weights out of neuron i, b = {bk}Kk=1 are the output biases and
q(U), q(b|U) and qi(wi|U) are arbitrary probability densities with finite first two moments. Then,
for any finite set of points S ⊂ RD such that 0 is in the convex hull of S ,

Var[fk(0)] ≤ max
s∈S
{Var[fk(s)]} for 1 ≤ k ≤ K. (3)

B Additional Figures

Figure 2 shows an illustration of case ii of theorem 1. Figure 3 shows plots of the variance of the
output of the MFVI BNNs, along with the bounds implied by theorem 1. We see that if we take the
points p and q to be the centres of the data clusters, we obtain a bound on the variance between them
given by the red line, which explains the extremely small variance obtained by MFVI between them.
Note that the variance increases rapidly outside the region −→pq, where our bounds cease to hold.

Figure 4 shows the variance of the output of the MC dropout BNN, as well as the bound at 0 implied
by theorem 2.

C Proof of Theorems

In order to prove theorem 1 and theorem 2 we first decompose the variance into a sum of two terms.
We prove in lemma 1 that the first term is convex as a function of x. This may be of independent
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Figure 3: Bounds on the variance for MFVI implied by theorem 1 for the datasets shown in figure 1
(left) and figure 2 (right). p and q are the centres of the observed data clusters. Note that while the
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family that saturate the bound.
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Figure 4: Bound on the variance at the origin for MC dropout implied by theorem 2 for the dataset
shown in figure 1. p and q are the centres of the observed data clusters. The variance at the origin is
upper bounded by the higher of the two red circles.

interest. To prove theorem 1, we note that the second term is a linear combination of the variances of
individual neurons. In lemma 2 we show a property of the variance functions of individual neurons,
that we leverage in lemma 3 to prove the main result. To prove theorem 2 we note that the second term
has a global minimum at x = 0. In the following we will use the notation introduced in appendix A.

C.1 Preliminary Lemmas

Lemma 1 ([7, Appendix B]). Assume a distribution for the output parameters of the form

q(W,b|U,v) = q(b|U,v)
∏
i

qi(wi|U,v).

Then, Var[fk(x)|U,v] is a convex function of x.

A simplified proof of lemma 1 is in appendix D.1.

Lemma 2. Consider the variance of a single neuron in the one dimensional case, with activation
a(x) ∼ N (µ(x), σ2(x)), µ(x) = µux + µv and σ2(x) = σ2

ux
2 + σ2

v . Let T1 denote the set of
functions from R → [0,∞) satisfying t(x) ≥ t(−x) and t(x + δ) ≥ t(x) for all x, δ > 0. Let T2
denote the set of functions from R → [0,∞) satisfying t(x) ≤ t(−x) and t(x + δ) ≤ t(x) for all
δ > 0 and x < 0. If µu ≥ 0, then Var[φ(a(x))] ∈ T1. If µu ≤ 0, then Var[φ(a(x))] ∈ T2.

The proof of lemma 2 is in appendix D.2.

Corollary 1 (Corollary of lemma 2). Consider a line in RD parameterized by [x(λ)]d = γdλ+ cd
for λ ∈ R such that γdcd = 0 for 1 ≤ d ≤ D. Let a(x) :=

∑D
d=1 udxd + v with {ud}Dd=1 and v

independent and Gaussian distributed. Then, Var[φ(a(x(λ)))] ∈ T1 ∪ T2 (as a function of λ).

7



Proof. The activation a(x(λ)) is a linear combination of Gaussian random variables, and is therefore
Gaussian distributed. Moreover the mean is linear in λ. The variance of a(x(λ)) is given by:

Var[a(x(λ))] =

D∑
d=1

Var[ud](γdλ+ cd)
2 + Var[v]

=

D∑
d=1

σ2
ud

(γdλ+ cd)
2 + σ2

v

= λ2

(
D∑
d=1

σ2
ud
γ2d

)
+ 2λ

(
D∑
d=1

σ2
ud
γdcd

)
+

(
D∑
d=1

σ2
ud
c2d + σ2

v

)

= λ2

(
D∑
d=1

σ2
ud
γ2d

)
+

(
D∑
d=1

σ2
ud
c2d + σ2

v

)

Defining σ2
ũ =

∑D
d=1 σ

2
ud
γ2d and σ2

ṽ =
∑D
d=1 σ

2
ud
c2d + σ2

v , the corollary follows from lemma 2.

Lemma 3. Let C be the set of convex functions from R→ [0,∞). Fix any a < 0 < b and c such that
|c| ≤ min(|a|, |b|). Then any function f that can be written as a linear combination of functions in
T1 ∪ T2 ∪ C with non-negative weights satisfies, f(c) ≤ f(a) + f(b).

The proof of lemma 3 can be found in appendix D.3.

Lemma 4. Let f : RD → R be a convex function and consider a finite set of points S ⊂ RD. Then
for any point r in the convex hull of S, f(r) ≤ max

s∈S
{f(s)}.

The proof of lemma 4 can be found in appendix D.4.

C.2 Proof of Theorem 1

Having collected the necessary preliminary lemmas we now prove theorem 1.

Proof of theorem 1. By the law of total variance,

Var[fk(x)] = E[Var[fk(x)|U,v]] + Var[E[fk(x)|U,v]].

Using lemma 1, Var[fk(x)|U,v] is convex as a function of x.As the expectation of a convex function
is convex, the first term is a convex function of x. For the second term we have

E[fk(x)|U,v] = E

[
I∑
i=1

wk,iφ(ai) + bk

∣∣∣∣U,v
]

=

I∑
i=1

µwk,i
φ(ai) + µbk ,

where µwk,i
:= E[wk,i], µbk := E[bk]. In the second line we used linearity of expectation and that

conditioned on (U,v), the ai are deterministic. Next,

Var[E[fk(x)|U,v]] = Var

[
I∑
i=1

µwk,i
φ(ai) + µbk

]
=

I∑
i=1

µ2
wk,i

Var[φ(ai)], (4)

since the ai are independent of each other.

Consider a line in RD parameterised by [x(λ)]d = γdλ + cd for λ ∈ R such that γdcd = 0 for
1 ≤ d ≤ D.
By corollary 1, Var[φ(ai(x(λ)))] ∈ T1 ∪ T2 (as a function of λ). Since Var[fk(x)|U,v] is convex
as a function of x, it is also convex as a function of λ. We have written Var[fk(x(λ))] in the form
assumed in lemma 3, completing the proof.
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C.3 Proof of Theorem 2

Proof. By the law of total variance,

Var[fk(x)] = E[Var[fk(x)|U]] + Var[E[fk(x)|U]].

Using lemma 1, Var[fk(x)|U] is convex as a function of x. As the expectation of a convex function
is convex, the first term is a convex function of x. This implies

E[Var[fk(0)|U]] ≤ max
s∈S
{E[Var[fk(s)|U]]} ,

by lemma 4. Var[E[fk(x)|U]] is non-negative everywhere. As the output of the first layer is
independent of the matrix U at x = 0, E[fk(0)|U] is deterministic. So Var[E[fk(0)|U]] = 0,
completing the proof.

D Proof of Lemmas

In this section we prove the preliminary lemmas stated in appendix C.1.

D.1 Proof of Lemma 1

Proof. We assume a distribution for the output weights such that:

q(W,b|U,v) = q(b|U,v)
∏
i

qi(wi|U,v).

Consider the variance of the output under this distribution conditioned on the values of the weights
and biases in the input layer:

Var[fk(x)|U,v] =
∑
i

Var[wk,i]φ(ai)
2 + Var[bk]. (5)

with ai :=
∑D
d=1 ui,dxd + vi. Equation (5) is justified since the weights from different neurons are

independent under q(W,b|U,v).

Since Var[fk(x)|U,v] is a linear combination of the φ(ai)
2 with non-negative weights (plus a

constant), to prove convexity it suffices to show that each φ(ai)
2 is convex as a function of x. φ(ai)

2

is convex as a function of ai, since it is 0 for ai ≤ 0 and a2i for ai > 0. To show that it is convex as a
function of x, we write

φ (ai(tx1 + (1− t)x2))
2

= φ

(∑
d

ui,d (t[x1]d + (1− t)[x1]d) + vi

)2

= φ

(
t

(∑
d

ui,d[x1]d + vi

)
+ (1− t)

(∑
d

ui,d[x2]d + vi

))2

≤ tφ

(∑
d

ui,d[x1]d + vi

)2

+ (1− t)φ

(∑
d

ui,d[x2]d + vi

)2

= tφ (ai(x1))
2

+ (1− t)φ (ai(x2))
2
,

completing the proof.

D.2 Proof of Lemma 2

For a ReLU network [8]:

Var[φ(a)] = µ(x)2
(
Φ(r)/r2 + g(r)− g(r)2

)
(6)

with µ(x) = E [a(x)] = µux + µv, σ(x)2 = σ2
ux

2 + σ2
v , r = r(x) = µ(x)

σ(x) , Φ(r) the standard
Gaussian CDF and

g(r) :=
N(r)

r
+ Φ(r),

9



with N(r) the standard Gaussian PDF. We also define

f(r) := Φ(r)/r2 + g(r)− g(r)2.

In order to prove lemma 2 we use this additional lemma.
Lemma 5. For r 6= 0,

sgn(f ′(r)) = −sgn(r).

We now prove lemma 2 using lemma 5, which is proven in appendix D.5.

Proof. We first show that if µu > 0, Var[φ(a(x))] is monotonically increasing for x > 0 and if
µu < 0, Var[φ(a(x))] is monotonically decreasing for x < 0. We show this by determining the sign
of the derivative of the variance with respect to x. Using the product and chain rules:

d

dx
[Var[φ(a(x))]] =

d

dx
[µ(x)2f(r(x))] = µ(x) (2µuf(r(x)) + µ(x)r′(x)f ′(r(x))) . (7)

We now split into cases based on the sign of µu and µv.

Case 1: µu, µv > 0 We want to show Var[φ(a(x))] is monotonically increasing for x > 0. We
recall equation (7),

d

dx
Var[φ(a(x))] = µ(x) (2µuf(r(x)) + µ(x)r′(x)f ′(r(x)))

= µ(x)

(
2µuf(r(x)) + r(x)

µuσ
2
v − µvσ2

ux

σ2
ux

2 + σ2
v

f ′(r(x))

)
. (8)

In this region, r(x) > 0, and by lemma 5, f ′(r(x)) < 0. For all x ≥ 0,

µuσ
2
v − µvσ2

ux

σ2
ux

2 + σ2
v

≤ µu.

It follows that
d

dx
Var[φ(a(x))] ≥ µ(x) (2µuf(r(x)) + r(x)µuf

′(r(x))) (9)

= 2µuµ(x)

(
f(r(x)) +

1

2
r(x)f ′(r(x))

)
. (10)

In order to show this is non-negative for x > 0, it suffices to show that f(r)+ 1
2rf

′(r) ≥ 0 for r > 0.

f(r) +
1

2
rf ′(r) =

Φ(r)

r2
+ g(r)− g(r)2 +

−Φ(r) +N(r)2 + rN(r)Φ(r)

r2

= g(r)(1− Φ(r)) ≥ 0.

The last inequality uses that for r > 0, g(r) > 0.

Case 2: µv > 0 > µu. Case 2 proceeds similarly to case 1. We want to show Var[φ(a(x))] is
monotonically decreasing for x < 0. We recall equation (8),

d

dx
Var[φ(a(x))] = µ(x)

(
2µuf(r(x)) + r(x)

µuσ
2
v − µvσ2

ux

σ2
ux

2 + σ2
v

f ′(r(x))

)
.

In this region, r(x) > 0. By lemma 5, f ′(r(x)) < 0. For all x ≤ 0,

µuσ
2
v − µvσ2

ux

σ2
ux

2 + σ2
v

≥ µu.

It follows that
d

dx
Var[φ(a(x))] ≤ µ(x) (2µuf(r(x)) + r(x)µuf

′(r(x))) (11)

= 2µuµ(x)

(
f(r(x)) +

1

2
r(x)f ′(r(x))

)
. (12)

As we have already established that f(r(x)) + 1
2r(x)f ′(r(x)) ≥ 0 for r > 0, d

dxVar[φ(a(x))] ≤ 0
for x < 0.
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Case 3: µu, µv < 0. We want to show the variance is monotonically decreasing for x < 0. We
recall equation (8)

d

dx
Var[φ(a(x))] = µ(x)

(
2µuf(r(x)) + r(x)

µuσ
2
v − µvσ2

ux

σ2
ux

2 + σ2
v

f ′(r(x))

)
= 2µuµ(x)

(
f(r(x)) +

1

2
r(x)

µuσ
2
v − µvσ2

ux

µuσ2
ux

2 + µuσ2
v

f ′(r(x))

)
. (13)

Subcase 3.1: µ(x) > 0. If µ(x) > 0,

µ(x) = µux+ µv > 0 ⇒
µux > −µv ⇒
µux

2 < −µvx ⇒
µuσ

2
ux

2 < −µvσ2
ux ⇒

µuσ
2
ux

2 + µuσ
2
v < µuσ

2
v − µvσ2

ux ⇒

1 >
µuσ

2
v − µvσ2

ux

µuσ2
ux

2 + µuσ2
v

.

The overall sign in front of the term we just bounded above is positive, so this upper bound can be
substituted in to bound the derivative of the variance above, yielding:

d

dx
Var[φ(a(x))] ≤ 2µuµ(x)

(
f(r(x)) +

1

2
r(x)f ′(r(x))

)
≤ 0.

As we have already shown that for r > 0, f(r(x)) + 1
2r(x)f ′(r(x)) > 0. This proves the subcase.

Subcase 3.2: µ(x) < 0. Similarly, if µu, µv, x < 0 and µ(x) < 0, then

µuσ
2
v − µvσ2

ux

µuσ2
ux

2 + µuσ2
v

> 1.

In this case, the overall sign in front of the term we just bounded is negative, so this lower bound can
be substituted in to upper bound the derivative of the variance.

d

dx
Var[φ(a(x))] ≤ 2µ(x)µu

(
f(r(x)) +

1

2
r(x)f ′(r(x))

)
.

We need to show that for r < 0, f(r)+ 1
2rf

′(r) = g(r)(1−Φ(r)) < 0. This is equivalent to showing
that g(r) < 0 for r < 0. This follows from the standard upper bound, 1−Φ(a) < 1

aN(a) for a > 0.

Case 4: µv < 0 < µu. The proof of case 4 is similar to case 3. We want to show the variance is
monotonically increasing for x > 0. We recall equation (8)

d

dx
Var[φ(a(x))] = µ(x)

(
2µuf(r(x)) + r(x)

µuσ
2
v − µvσ2

ux

σ2
ux

2 + σ2
v

f ′(r(x))

)
= 2µuµ(x)

(
f(r(x)) +

1

2
r(x)

µuσ
2
v − µvσ2

ux

µuσ2
ux

2 + µuσ2
v

f ′(r(x))

)
. (14)

Subcase 4.1: µ(x) > 0. If µv < 0 and µu, x, µ(x) > 0, then

µuσ
2
v − µvσ2

ux

µuσ2
ux

2 + µuσ2
v

< 1.

The overall sign in front of the term we just bounded above is negative, so this upper bound can be
substituted in to lower bound the derivative of the variance, yielding:

d

dx
Var[φ(a(x))] ≥ 2µ(x)µu

(
f(r(x)) +

1

2
r(x)f ′(r(x))

)
.

As we have already shown that for r > 0, f(r(x)) + 1
2r(x)f ′(r(x)) > 0. This proves the subcase.
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Subcase 4.2: µ(x) < 0. If µv, µ(x) < 0 and µu, x > 0, then
µuσ

2
v − µvσ2

ux

µuσ2
ux

2 + µuσ2
v

> 1.

In this case, the overall sign in front of the term we just bounded is positive, so this lower bound can
be substituted in to lower bound the derivative of the variance:

d

dx
Var[φ(a(x))] ≥ 2µ(x)µu

(
f(r(x)) +

1

2
r(x)f ′(r(x))

)
.

We need to show that for r < 0, f(r) + 1
2rf

′(r) = g(r)(1− Φ(r)) < 0. This was done in subcase
3.2.

In case 3 and 4, we excluded the case µ(x) = 0. However, the monotonicity results still hold if
µ(x) = 0 by continuity of Var[φ(a(x))] as a function of x. This completes the proof that if µu > 0,
Var[φ(a(x))] is monotonically increasing for x > 0 and if µu < 0, Var[φ(a(x))] is monotonically
decreasing for x < 0.

It remains to show that if µu > 0,Var[φ(a(x))] ≥ Var[φ(a(−x))] for x > 0, and if µu <
0,Var[φ(a(x))] ≥ Var[φ(a(−x))] for x < 0. From equation (6) we can write

Var[φ(a)] = σ2(x)
(
Φ(r) + rh(r)− h(r)2

)
,

where h(r) := N(r) + rΦ(r). Note h′(r) = Φ(r). We first show that α(r) := Φ(r) + rh(r)−h(r)2

is monotonically increasing.

Taking derivatives,
α′(r) = N(r) + rΦ(r) + h(r)− 2h(r)Φ(r) = 2h(r)(1− Φ(r)).

It suffices to show that h(r) > 0. For r > 0, h(r) is a sum of positive numbers. For r < 0, let
s = −r > 0. Then

h(r) = −Φ(−s)s+N(−s) = −(1− Φ(s))s+N(s).

The statement follows from the standard bound N(s)
s > 1− Φ(s) for s > 0.

We next show that if sgn(x) = sgn(µu), r(x) ≥ r(−x). Since σ(x) = σ(−x), it suffices to show
that µ(x) ≥ µ(−x). This follows from

µ(x) = µux+ µv ≥ −µux+ µv = µ(−x),

where we have used sgn(x) = sgn(µu) in the inequality.

Finally we have that if sgn(x) = sgn(µu), Var[φ(a(x))] ≥ Var[φ(a(−x))] since

Var[φ(a(x))] = σ2(x)α(r(x)) ≥ σ2(x)α(r(−x)) = Var[φ(a(−x))].

In the inequality we have used the monotonicity of α(r) and that r(x) ≥ r(−x).

By continuity of the variance in all of its arguments, and that T1 and T2 are closed under pointwise
limits, the boundary case µu, µv and x equal to 0 follow. This completes the proof of the lemma.

D.3 Proof of Lemma 3

Proof. First, note that each of these three sets is closed under positive scaling and addition. We can
therefore write f as a sum of three functions, f(x) = t1(x) + t2(x) + s(x) with t1 ∈ T1, t2 ∈ T2
and s ∈ C. We prove the case when a < c < 0 < b.

f(c) = t1(c) + t2(c) + s(c) (def.)
≤ t1(c) + t2(a) + s(c) (monotonicity of T2)
≤ t1(−c) + t2(a) + s(c) (c < 0, inequality condition for T1)
≤ t1(b) + t2(a) + s(c) (monotonicity of T1, |c| = −c < b)
≤ t1(b) + t2(a) + max(s(a), s(b)) (s convex)
≤ t1(b) + t2(a) + s(a) + s(b)

≤ t1(a) + t1(b) + t2(a) + t2(b) + s(a) + s(b)

= f(a) + f(b)

The case a < 0 < c < b follows from symmetry.
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D.4 Proof of Lemma 4

Proof. Let {sn}Nn=1 = SN ⊂ RD. We proceed by induction. The lemma is clearly true for N = 2.
Assume it is true for N . Let Conv(SN+1) denote the convex hull of SN+1. Consider a point
rN+1 ∈ Conv(SN+1). Then

f(rN+1) = f

(
N+1∑
n=1

αnsn

)
(15)

with
∑N+1
n=1 αn = 1 and αn ≥ 0 for 1 ≤ n ≤ N + 1. We can write

f(rN+1) = f

((
N∑

n′=1

αn′

)
tN + αN+1sN+1

)
(16)

≤ max{f(tN ), f(sN+1)} (17)

where tN :=
∑N
n=1 αnsn

/∑N
n′=1 αn′ , and we have used the convexity of f . By the induction

assumption, f(tN ) ≤ max
s∈SN

{f(s)}, since tN ∈ Conv(SN ). Combining this with equation (17)

completes the proof.

D.5 Proof of Lemma 5

In proving lemma 5 we consider the case r < 0 and r > 0 separately.
Proposition 1. For r < 0,

f ′(r) ≥ 0.

Proof. We begin by calculating f ′(r(x)),

f ′(r) =
−2Φ(r) + 2N(r)2 + 2N(r)rΦ(r)

r3
. (18)

On the interval r ∈ (−∞, 0), f ′(r) is continuous. Additionally, f ′(−1) ≈ .297 > 0. This implies if
f ′(r) is negative for some r < 0, then there exists an s < 0 such that f ′(s) = 0. Suppose such an s
exists, then

s =
Φ(s)−N(s)2

Φ(s)N(s)

We will reach a contradiction by showing that for r < 0, h(r) := Φ(r) − N(r)2 > 0, as this
contradicts s < 0. h(r) is continuously differentiable. Therefore, we can prove h(r) > 0 for all
r < 0 by showing:

1. lim
r→−∞

h(r) ≥ 0.

2. h′(r) > 0 for all r < 0.

We first verify 1:

lim
r→−∞

h(r) = lim
r→−∞

Φ(r)− lim
r→−∞

N(r)2 = 0− 0 ≥ 0

We now verify 2:
h′(r) = N(r)(1 + 2rN(r)).

It remains to show rN(r) > −1/2 for r < 0. We find the minimum of rN(r) :

d

dr
[rN(r)] = N(r)(1− r2).

On the negative real line, this has a unique zero at r = −1. This gives, −N(−1) = −(2πe)−1/2 >
−1/2. Checking end points of the interval for potential minima: lim

r→−∞
rN(r) = 0 and lim

r→0
rN(r) =

0. Therefore, rN(r) > −1/2 implying h′(r) > 0 completing the proof.

13



Proposition 2. For r > 0,
f ′(r) < 0.

Proof. Recall (equation (18)),

f ′(r) =
−2Φ(r) + 2N(r)2 + 2N(r)rΦ(r)

r3

Then for r > 0,

f ′(r) ≤ 0⇔ I(r) := −Φ(r) +N(r)2 +N(r)rΦ(r) ≤ 0.

Rearranging [1, 7.1.13] yields:

1− 2

r +
√
r2 + 8/π

N(r) ≤ Φ(r) < 1− 2

r +
√
r2 + 4

N(r). (19)

for r ≥ 0.

I(r) = −Φ(r) +N(r)2 + rN(r)Φ(r)

≤ −Φ(r) +N(r)2 + rN(r)

(
1− 2

r +
√
r2 + 4

N(r)

)
≤ −1 +

2

r +
√
r2 + 8/π

N(r) +N(r)2 + rN(r)

(
1− 2

r +
√
r2 + 4

N(r)

)
= −1 +

2

r +
√
r2 + 8/π

N(r) +N(r)2 + rN(r)− 2r

r +
√
r2 + 4

N(r)2

= −1 +
2

r +
√
r2 + 8/π

N(r) + rN(r) +N(r)2
(

1− 2r

r +
√
r2 + 4

)
(20)

We now make the use of numerous crude bounds which hold for r > 0:

1. N(r) ≤ 1/
√

2π,

2. 2

r+
√
r2+8/π

≤ 2√
8/π

=
√
π/2,

3. rN(r) ≤ 1/
√

2πe

4.
(

1− 2r
r+
√
r2+4

)
≤ 1

Plugging these in to equation (20),

I(r) ≤ −1 +

√
π/2√
2π

+
1√
2πe

+
1

2π
= −1

2
+

1√
2πe

+
1

2π
≈ −0.098 < 0.

E Tightness of Bounds

Here we prove that the bound in case i of theorem 1 is tight.

Proposition 3. Let the line segment −→pq from case i of theorem 1 be parameterised by λ such that
p = x(λp) and q = x(λq) with λp < 0 < λq. The bound given in theorem 1 is tight in the sense
that for all I ≥ 2 and any δ > 0, for all λp < λ < λq there exists a distribution of the form assumed
in theorem 1 such that Var[fk(p)] + Var[fk(q)]−Var[fk(x(λ))] < δ.

Proof. Recall
Var[fk(x)] = E[Var[fk(x)|U,v]] + Var[E[fk(x)|U,v]]
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where

Var[E[fk(x)|U,v]] = Var

[
I∑
i=1

µwk,i
φ(ai) + µbk

]
=

I∑
i=1

µ2
wk,i

Var[φ(ai)]. (21)

We will focus on one term in this sum, and suppress the indices i, k. First consider the case where x
is one-dimensional. Recall the variance expression:

Var[φ(a)] = σ2(x)
(
Φ(r) + rh(r)− h(r)2

)
.

where σ2(x) = σ2
ux

2 +σ2
v , r = µux+µv√

σ2
ux

2+σ2
v

, and h(r) := N(r) + rΦ(r). Now consider a distribution

such that σv = εσ̃v, σu = ε2σ̃u and µw = µ̃w

ε with ε > 0. Each term in the sum in equation (21) is
of the form:

µ2
wVar[φ(a)] = µ2

wσ
2(x)

(
Φ(r) + rh(r)− h(r)2

)
=
µ̃2
w

ε2
(σ2
ux

2 + σ2
v)
(
Φ(r) + rh(r)− h(r)2

)
= µ̃2

w(ε2σ̃2
ux

2 + σ̃2
v)
(
Φ(r) + rh(r)− h(r)2

)
.

We also have

r(x) =
µux+ µv√
σ2
ux

2 + σ2
v

=
µux+ µv

ε
√
ε2σ̃2

ux
2 + σ̃2

v

.

Now consider the limit of the variance function as ε→ 0. We have

lim
ε→0

µ2
wVar[φ(a)] = lim

ε→0
µ̃2
w(ε2σ̃2

ux
2 + σ̃2

v) lim
ε→0

(
Φ(r) + rh(r)− h(r)2

)
= µ̃2

wσ̃
2
v lim
ε→0

(
Φ(r) + rh(r)− h(r)2

)
If µu > 0, then for x > −µv

µu
, limε→0 µ

2
wVar[φ(a(x))] = µ̃2

wσ̃
2
v limr→∞ α(r) where we have

defined α(r) :=
(
Φ(r) + rh(r)− h(r)2

)
. We have

lim
r→∞

α(r) = lim
r→∞

(
Φ(r) + rN(r) + r2Φ(r)(1− Φ(r))−N(r)2 − 2rN(r)Φ(r)

)
(22)

= lim
r→∞

(
Φ(r) + r2Φ(r)(1− Φ(r))

)
(23)

= lim
r→∞

Φ(r) (24)

= 1. (25)

In equation (23) we used that limr→∞ rN(r) = 0 since by l’Hôpital’s rule we have

lim
r→∞

rN(r) = lim
r→∞

r√
2π exp

(
1
2r

2
) = lim

r→∞

1√
2πr exp

(
1
2r

2
) = 0.

In equation (24) we used the fact that r2(1− Φ(r)) < rN(r) for r > 0, hence

lim
r→∞

r2(1− Φ(r)) ≤ lim
r→∞

rN(r)

= 0,

and since r2(1 − Φ(r)) > 0, it follows that limr→∞ r2(1 − Φ(r)) = 0. For x < −µv

µu
, we have

limε→0 µ
2
wVar[φ(a(x))] = µ̃2

wσ̃
2
v limr→−∞ α(r). This is given by

lim
r→−∞

α(r) = lim
r→−∞

(
Φ(r) + rN(r) + r2Φ(r)(1− Φ(r))−N(r)2 − 2rN(r)Φ(r)

)
= 0,

where we have used the fact that limr→−∞ r2Φ(r) = 0, since r2Φ(r) > 0 and

lim
r→−∞

r2Φ(r) = lim
r′→∞

r′2Φ(−r′) = lim
r′→∞

r′2(1− Φ(r′)) ≤ lim
r′→∞

r′N(r′) = 0.
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In summary, if µu > 0, for all x 6= −µv

µu
the pointwise limit of µ2

wVar[φ(a(x))] as ε → 0 is a
Heaviside step function with height µ̃2

wσ̃
2
v , taking the value 0 for all x < −µv

µu
. Similarly, if µu < 0,

the pointwise limit of µ2
wVar[φ(a(x))] is a step function of the same height but taking the value 0 for

all x > −µv

µu
.

In one dimension we can therefore saturate the bound as follows. Set the number of neurons, I = 2.
Let the pointwise limit of the contribution of the first neuron to Var[E[fk(x)|U,v]] be a step function
of height µ̃2

w1
σ̃2
v1

:= Vp taking the value 0 for x < − µv1

µu1

:= λp. Let the limit of the contribution of

the second neuron be a step function of height µ̃2
w2
σ̃2
v2

:= Vq taking the value 0 for x > − µv2

µu2

:= λq .
Note that there are enough degrees of freedom to set Vp, Vq, λp and λq independently. We choose
λq > λp.

Then for any δ, l > 0 and any λp < λ < λq , there exists an ε > 0 such that

Var[E[f(λp − l)|U,v]] + Var[E[f(λq + l)|U,v]]−Var[E[f(λ)|U,v]] < δ,

since

Var[E[f(λp − l)|U,v]]→ Vq
Var[E[f(λq + l)|U,v]]→ Vp

Var[E[f(λ)|U,v]]→ Vp + Vq

pointwise. Taking λp − l and λq + l to be the λ’s from the statement of the remark, this proves
the remark in the one-dimensional case. Note that in this construction we have not considered the
contribution of the first term, E[Var[f(x)|U,v]]. This term can be ignored by setting the Var[wk,i]
sufficiently small. For I > 2, neurons not used in this construction can be ignored similarly.

To handle the D-dimensional case, note that each term in the sum in equation (21) is of the form

µ2
wk,i

Var[φ(ai(x(λ)))] = µ2
wk,i

Var

[
φ

(
D∑
d=1

ui,dγdλ+ vi

)]
,

so the construction can be reduced to the one-dimensional case upon defining the Gaussian ran-
dom variable ũi :=

∑D
d=1 ui,dγd. Since we can set µũi

, µvi , σ
2
ũi
, σ2
vi independently by choosing

appropriate values for the µui,d
, µvi , σ

2
ui,d

and σ2
vi , the same construction can be used as in the

one-dimensional case, completing the proof.

F Deep Networks

In this section we discuss if our results can be extended to deeper networks. In particular, we could ask
if mean-field Gaussian posteriors can represent in-between uncertainty with a 2-hidden layer ReLU
BNN. We give a construction4 to show that any mean and variance function can be approximated in
this case. Consider a 2-hidden layer BNN with I ∈ N hidden units in the first hidden layer, and 2
hidden units in the second hidden layer. The mapping is defined by:

h(1)(x) = φ
(
W(0)x + b(0)

)
h(2)(x) = φ

(
W(1)h(1)(x) + b(1)

)
f(x) = W

(2)
1 h

(2)
1 (x) +W

(2)
2 h

(2)
2 (x) + b(2),

where h(1) ∈ RI and h(2) = [h
(2)
1 , h

(2)
2 ]T ∈ R2. Each weight and bias in this network is represented

by an independent Gaussian distribution. Consider setting the parameters (W(0),b(0),W(1),b(1)) to
be deterministic, by sending their variances to zero. Then the mapping from x→W(1)h(1)(x)+b(1)

is a single-hidden layer deterministic MLP. By the universal approximation theorem [17], this mapping
can approximate any continuous function for sufficiently large I . Therefore, with φ(a) = max(a, 0),
the mapping from x→ h(2)(x) can approximate any non-negative continuous function. Now consider

4We thank Sebastian W. Ober for help with this construction.
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setting W (2)
1 = 1 deterministically, setting the variance b(2) to zero, and letting W (2)

2 ∼ N (0, 1).
Then for the mean of the output we have

E[f(x)] = E[W
(2)
1 h

(2)
1 (x) +W

(2)
2 h

(2)
2 (x) + b(2)]

= E[W
(2)
1 h

(2)
1 (x) + b(2)]

= h
(2)
1 (x) + b(2),

and for the variance we have

Var[f(x)] = Var[W
(2)
1 h

(2)
1 (x) +W

(2)
2 h

(2)
2 (x) + b(2)]

= Var[W
(2)
2 h

(2)
2 (x)]

= Var[W
(2)
2 ](h

(2)
2 (x))2

= (h
(2)
2 (x))2.

Since h(2)1 (x) is a universal approximator of non-negative functions, the mean function E[f(x)] =

h
(2)
1 (x) + b(2) is a universal function approximator. Since h(2)2 (x) is another universal approximator

of non-negative functions, the variance function Var[f(x)] = (h
(2)
2 (x))2 is a universal approximator

of non-negative functions. Thus a 2-hidden layer BNN with a mean-field Gaussian posterior can
approximate any desired continuous mean and variance function, and hence can represent in-between
uncertainty.

Our construction may be considered somewhat pathological, as it sets many of the parameter variances
to zero5. This would lead to the KL-divergence between the approximate posterior and the prior
being infinite if MFVI is used. However, there may be other, less pathological settings of the
variational parameters that give similarly flexible mean and variance functions. In practice, this
construction simply shows that there exist mean-field Gaussian distributions that can provide in-
between uncertainty. It does not tell us that those distributions will be found by, e.g. optimising the
ELBO. In fact, experiments have not found that adding depth helps with in-between uncertainty [7].
In future work, we aim to investigate further why MFVI fails to obtain in-between uncertainty even
with deep networks.

G Experimental Details

G.1 Data Generation

The input locations of data were generated by sampling 100 total points, 50 each from two distinct
Gaussians. In figure 1, one Gaussian was centred at (−1,−1) and the other at (1, 1); both had
isotropic variance of 0.01. For figure 2 the Gaussians were centred at (.5,±.8) and had isotropic
variance of 0.01. The output values were generated by sampling from the Gaussian process prior with
kernel resulting from the wide limit of the BNN at these input values.

G.2 Model and Training

Each network contained a single hidden layer with 50 units. The prior standard deviation on biases
was set to 1. The prior standard deviation on weights in the top layer was set to 4/

√
50 and on the

bottom to 4/
√

2. The scaling on the prior standard deviation on weights is chosen so that in the wide
limit the BNN prior converges to a Gaussian process [23]. The noise variance was set to 0.01. The
Gaussian process regression model was fit with the equivalent ReLU kernel [3] using exact inference.
All networks were trained for 50,000 epochs using Adam with learning rate 10−3. For MC dropout,
we used a dropout probability p = 0.1, and the L2 regularisation constants were chosen such that the
‘KL condition’ [9, Chapter 3.2.3] holds. We used 500 samples at test time to estimate the mean and
standard deviation of the predictive distribution.

5This construction can be made rigorous with small strictly positive variances.
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