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Abstract

Stochastic variational inference (SVI) plays a key role in Bayesian deep learning.
Recently various divergences have been proposed to design the surrogate loss for
variational inference. We present a simple upper bound of the evidence as the
surrogate loss. This evidence upper bound (EUBO) equals to the log marginal
likelihood plus the KL-divergence between the posterior and the proposal. We
show that the proposed EUBO is tighter than previous upper bounds introduced
by χ-divergence or α-divergence. To facilitate scalable inference, we present
the numerical approximation of the gradient of the EUBO and apply the SGD
algorithm to optimize the variational parameters iteratively. Simulation study with
Bayesian logistic regression shows that the upper and lower bounds well sandwich
the evidence and the proposed upper bound is favorably tight. For Bayesian neural
network, the proposed EUBO-VI algorithm outperforms state-of-the-art results for
various examples.

1 Introduction

Stochastic variational inference (SVI) plays a key role in Bayesian deep learning. SVI solves the
Bayesian inference problem by introducing a variational distribution q(θ;λ) over the latent variables
θ [11, 7], and then minimizes the Kullback-Leibler (KL) divergence between the approximating
distribution q(θ;λ) and the exact posterior p(θ|D). This minimization is the same as maximizing
the evidence lower bound (ELBO), L =

∫
q(θ;λ)[log p(D, θ) − log q(θ;λ) [11], which is a lower

bound of the model evidence log p(D). The KL-divergence is the discrepancy between the surrogate
loss ELBO and the evidence. SVI turns the Bayesian inference into an optimization problem. It has
been recognized that the property of discrepancy has strong influence on the optimization of ELBO
[15, 2, 22]. The classical objective DKL(q(θ;λ)||p(θ|D)) leads to approximate the posteriors with
zero-forcing behavior. This zero-forcing behavior imposes undesirable properties, which may lead
to underestimation of the posterior’s support especially when dealing with light-tailed posteriors or
multi-modal posteriors [17, 5, 2]. Various SVI methods are proposed to use different divergences
to achieve tighter bound and/or mass-covering property, which may lead to better performance
in SVI [15, 2, 21]. Recently, the upper bound of log p(D) has captured certain attention. For
instance, the variational Rényi bound (Lα(λ) = 1

1−α logEq[(
p(D,θ)
q(θ;λ) )

1−α], for α 6= 1) and the χ

upper bound (Lχn(λ) = 1
n logEq[(

p(D,θ)
q(θ;λ) )

n], for n > 1) are introduced to provide the mass-covering
property: optimizing such divergence leads to a variational distribution with a mass-covering (or say
zero-avoiding) behavior. The resulting gradient of α-divergence based upper bound is,

∇λLα =
1

1− α
Eq [wα∇λ(log p(D, θ)− log q(θ;λ))] (1)

where wα=( p(D,θ)q(θ;λ) )
1−α
/Eq

[
( p(D,θ)q(θ;λ) )

1−α] [15]. Interestingly, we have the connection that when α→ 1,
the Rényi- divergence become the KL-divergence and the Rényi-VI algorithm reduces to the standard
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SVI [7]; when α = 0 , the Rényi-VI becomes the importance weighted auto-encoder (IWAE) or
say the importance weighted VI[1, 3]; when α = −1 , it becomes the χ2 divergence based CHIVI
algorithm [2]. The integration in the gradient∇λLα can be estimated by Monte Carlo approach with
samples drawn from q(θ;λ). Then the stochastic gradient descendant (SGD) algorithm is applied to
optimize the variational parameter λ. Moreover, to deal with large datasets, we may use a minibatch
of the data D in the evaluation of the joint distribution p(D, θ) [19]. Inspired by these previous works,
here we explore a simple but effective upper bound for variational inference, our main contributions
are summarized:

1. We propose a new upper bound of the evidence by introducing the KL-divergence between the
posterior and the variational distribution. The proposed EUBO possess the mass covering properties,
and is tighter then the upper bounds introduced by α-divergence or χ-divergence.

2. We present the numerical approximation of the gradient of the EUBO, apply the SGD algorithm
to optimize the variational parameters, and format a black-box style variational inference which is
suitable for scalable Bayesian inference.

3. With the upper and lower bound sandwiching the evidence, we can be more confident to evaluate
the fitting of model. We also find that the EUBO converges faster and is tighter than the ELBO. In
Bayesian neural network regression, the EUBO-VI algorithm gains improvement in both the test
error and the model fitting.

2 Variational Inference with the EUBO

2.1 Upper bound of the model evidence

As it is well known that the KL-divergence is not symmetric, DKL(q||p) possesses the zero-force
property, but the inverse KL-divergenceDKL(p||q) posses the mass-covering property. This motivates
our work to leverage onDKL(p||q) in the design of the surrogate loss. By using Gibbs’ inequality that
−
∫
p(θ|D) log p(θ|D)dθ ≤ −

∫
p(θ|D) log qλ(θ)dθ holds for any distribution q(θ;λ), we introduce

an upper bound on the model evidence,

log p(D) =
∫
p(θ|D) log p(D, θ)dθ −

∫
p(θ|D) log p(θ|D)dθ

≤
∫
p(θ|D) log p(D, θ)dθ −

∫
p(θ|D) log q(θ;λ)dθ =

∫
p(θ|D) log p(D, θ)

q(θ;λ)
(2)

We define U(λ) ≡
∫
p(θ|D) log p(D, θ)

q(θ;λ)
dθ as the Evidence Upper BOund (EUBO). It is easy to find

that U(λ) = log p(D) + DKL(p(θ|D)||q(θ;λ)), that is DKL(p(θ|D)||q(θ;λ)) just the discrepancy
between the EUBO U(λ) and the true log p(D).

2.2 Some properties of the EUBO

We present three favorable properties of the proposed EUBO U(λ). First the discrepancy
DKL(p(θ|D)||q(θ;λ)) possesses mass covering property. According to previous studies[15, 2],
the mass covering property has advance in approximation of the posterior. The mass covering prop-
erty of EUBO, can be easily verified by simulation examples [16, 8]. Second, DKL(p(θ|D)||q(θ;λ))
is a tight discrepancy. We find that the DKL(p(θ|D)||q(θ;λ)) proposed in this work is tighter than
the α-divergence and χn-divergence. With this tighter discrepancy, we can then design tighter upper
bounds. As discussed in [1, 21], tighter bound tends to lead better performance in SVI. We present a
theorem to show the advantage of the proposed EUBO (see the appendix for a brief proof).

Theorem 1. Define the EUBO as equation (2). Then the following holds:

• ELBO L(λ) ≤ log p(D) ≤ EUBO U(λ).
• Dα(q(θ)||p(θ|D)) ≥ −α

1−αDKL(p(θ|D)||q(θ)) , for α ≤ 0; Dχn(q(θ)||p(θ|D)) ≥
n−1
n DKL(p(θ|D)||q(θ)), for n ≥ 2.

• −α
1−αU(λ) +

1
1−α log p(D) ≤ Uα(λ), for α ≤ 0 ; n−1n U(λ) +

1
n log p(D) ≤ Uχn(λ), for

n ≥ 2.
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Third, the numerical estimation of EUBO is close to the ground true evidence, even when the
variational distribution has not been well optimized. The EUBO involves an integration with respect
to the unknown posterior. As stated in later section, we use importance sampling in the estimation
of this upper bound. The using of importance sampling reduces the bias of the MC estimation of
the evidence when the variational proposal has certain discrepancy with the posterior. This property
leads to two advantage: 1) model selection based solely on the ELBO is inappropriate because of the
possible variation in the tightness of this bound, with the accompanying upper bound to sandwich
the evidence, one can perform model selection with more confidence[4, 10]; 2) in case we need to
evaluate the evidence or its surrogate when the optimization process of variational parameters can
run only few steps, for example in the Bayesian Meta-learning[12, 20], the proposed EUBO may be
preferable since its estimation is insensitive to the bias of variational distribution.

2.3 SGD for the EUBO

By definition, the EUBO U(λ) has an integration with respect to unknown posterior. In previous
study[9, 10], the posterior is represented by simulated sample from Markov chain Monte Carlo
(MCMC), and the integration is approximated via Monte Carlo. However, Monte Carlo particularly
MCMC is not a scalable method in dealing with large scale Bayesian learning problem. Following
the idea of black-box VI[19], we use only a few number of Monte Carlo samples to obtain a ‘noisy’
gradient of the EUBO, and then apply the SGD approach to optimize λ iteratively. First, we derive
the gradient of U(λ) (refer to the Appendix for details), denoted by ∇λU ,

∇λU = Eq {w(θ) [(logω(θ) + 1)∇λ log p(D, θ)−∇λ log q(θ;λ)]} (3)

where w(θ) = p(θ|D)
q(θ;λ) and ω(θ) = p(D,θ)

q(θ;λ) . Note that the posterior p(θ|D) in w(θ) is generally
unknown, so we use the joint distribution p(D|θ)p(θ) instead and normalizes the weights to cancel
the unknown constant p(D). Given the samples {θ(i)}Mi=1 drawn from q(θ;λ) and normalized weights
{ŵ(i)}Mi=1, we estimate∇λU as follows,

∇̂λU =

M∑
i

ŵ(i)
[
(logω(θ(i)) + 1)∇λ log p(D, θ(i))−∇λ log q(θ(i);λ)

]
. (4)

To deal with large dataset, we divide the entire dataset to mini-batch. Only a mini-batch data
S = {xn}Sn=1 is used in the evaluation of p(D, θ),

p(D, θ(i)) ≈

[
S∏
n=1

p(xn|θ(i))

]N
S

p(θ(i)).

To incorporate with the advantage of autogradient packages [], we take the reparametrization trick
[13] that θ(i) = gλ(ε

(i)) = µ + σε(i), where λ = [µ, σ] and ε(i) ∼ N (0, 1), then the resulting
reparameterization gradient becomes,

∇̂λU =

M∑
i

ŵ(i)
[
(logω(θ(i)) + 1)∇λ log p(D, gλ(ε(i)))−∇λ log q(gλ(ε(i));λ)

]
. (5)

This reparametrization trick significantly reduces the effort needed to implement variational inference
in a wide variety of models. Finally, with the noisy estimation of the gradient ∇̂λU , the SGD
algorithm is applied to minimize the EUBO iteratively, λt+1 = λt − α ∗ ∇̂λU . The algorithm is
presented as follows,

After we obtain the optimal λ∗, the resulting minimum upper bound U(λ) is then estimated by

Û∗ =
M∑
i=1

ŵ(i)

[
N∑
n=1

log p(xn|θ(i)) + log p(θ(i))− log q(θ(i);λ∗)

]
(6)

Furthermore, if we assume the posterior p(θ|D) and the joint distribution p(θ,D) has no relation
to the variational parameter λ , which means ∇λp(θ|D) = 0 and ∇λ log p(D, θ) = 0, then we
obtain the score gradient, ∇̂λU = −

∑M
i ŵ(i)∇λ log q(θ(i);λ). Compare with the score gradient of
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Algorithm 1 EUBO based variational inference (EUBO-VI)

• Initialization: initialize the parameter λ0 randomly or by some pre-specified values, the
learning rate α0.

• for t = 0, ..., T

– pick up a mini-batch data S = {xn}Sn=1.
– generate M samples {θ(i)}Mi=1 : ε(i) ∼ N (0, 1) , θ(i) = gλ(ε

(i) = µ+ σε(i).

– calculate the weight logw(i) = N
S

∑S
n=1 log p(xn|θ(i))+ log p(θ(i))− log q(θ(i);λt),

w(i) = exp
(
logw(i) −max{logw(i)}

)
, and normalize ŵ(i) = w(i)∑

i w
(i) .

– evaluate the gradient ∇̂λU = −
∑
ŵ(i)∇λ log q(gλ(ε(i)) .

– update λt+1 = λt − αt ∗ ∇̂λU .

CHIVI[2], we find the only difference is the definition of ŵ: ŵ ∝ p(D,θ)
q(θ;λ) for our EUBO-VI, while

ŵ ∝ (p(D,θ)q(θ;λ) )
2 for CHIVI. However, although there is some similarity between the EUBO-VI and

CHIVI/Rényi-VI, EUBO-VI is unique and does not fall into any special case of these previous upper
bound based SVI algorithms.

3 Simulation studies

3.1 Bayesian Logistic Regression

For Bayesian logistic regression, we use data sets from the UCI repository: Iris, Pima, Spectf, Wdbc
and Ionos. The variate dimension in these data sets range from 5 to 45, including a dimension of all
ones to account for offset. We set the prior distribution of the coefficients as N (0, 1), choose the
number of importance sampling samples as 10 and the mini-batch size as 100. In our experiments we
use the Adam algorithm [14], an adaptive version of SGD which automatically tune the learning rates
according to the history of gradients and their variances. We perform experiments with the proposed
EUBO-SVI, in comparision with vanilla SVI [18], CHIVI[2] and Rényi-VI [15]. We also compared
the optimized bounds obtained by various algorithms: L̂ denotes ELBO from vanilla SVI, Û denotes
EUBO from the proposed algorithm, Uχ2 denotes the upper bound from CHIVI, Ûα=−2 and L̂α=2

denotes the upper and lower bounds from the Rényi-VI with different α-divergences.

Take the logistic regression of Iris dataset as example, we show the estimated bound of ELBO and
EUBO of each epoch in Figure 1. We observed that the EUBO converges faster, and is tighter
than the ELBO even in the early stage when the variational parameters are not well optimized. We
run 20 trails for each bounds, the results are shown in table 1. The upper and lower bounds well
bracket the log evidence. With both the lower and upper bounds being close to each other, we
are more confidence that the VIs find the true evidence. Moreover, simulation results confirm that
1
2U(λ) +

1
2 log p(D) ≤ Uχ2(λ), which is consistent with Theorem 1 discussed in Section 2.2. To test

the performance of prediction, all the datasets are randomly partitioned into 90% for training and
10% for testing, and the results are averaged over 20 random trials. The averaged test error is shown
in table 2, which shows that the EUBO-SVI algorithm performs well in model prediction.

3.2 Bayesian Neural Network

In the Bayesian neural network regression, we take the same setting with previous work [15]. We use
neural networks with one hidden layers, and take 50 hidden units for most datasets, except that we
take 100 units for Protein which are relatively large; We set N (0, 1) as the prior distribution for the
weight and bias of the neural network. We choose RELU(x) = max(0, x) as the active function.
The number of importance sampling samples is 10 and the mini-batch size is 100. All the datasets are
randomly partitioned into 90% for training and 10% for testing, and the results are averaged over
20 random trials. We compare our EUBO-VI with state-of-the-art results directly cited from some
representative algorithms: Probabilistic backpropagation(BPB)[6], Rényi-VI [15], and CLBO-VI
[21]. The averaged prediction accuracy and averaged test log likelihood (LL) are given in Table 3
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Figure 1: Bayesian logistic regression on Iris data: the upper and lower bounds sandwich the log
marginal likelihood.

Table 1: Bayesian logistic regression: estimated upper and lower bounds

Iris Pima Spectf Wdbc Ionos

Ûα=−2 -7.94±0.70 -41±1.96 -6.20±1.79 -6.97±2.24 -28.11±2.29
Û -8.34±0.37 -44.7±2.79 -7.53±1.60 -8.38±2.39 -30.01±2.46
Uχ2 -8.58±0.71 -45.3±2.07 -8.33±1.05 −9.53±1.95 -34.67±2.11
1
2 Û + 1

2 log p̂(D) -9.18±0.23 -46.84±2.21 -9.02±1.12 -10.84±2.02 -33.86±2.18
log p̂(D) -10.03±0.17 -48.94±1.65 -10.51±0.65 -13.3±1.65 -37.72±1.91
L̂ -12.85±0.27 -53.36±0.95 -12.58±0.30 -18.99±0.29 -46.67±0.40
L̂α=2 -14.29±0.55 -55.55±1.29 -13.19±0.21 -25.18±1.04 -51.01±0.45

and Table 4 respectively. The proposed EUBO-VI achieves substantial improvement on both the test
error and negative log likelihood for various examples.

4 Conclusion

We investigate the variational inference utilize an effective evidence upper bound (EUBO). The
proposed upper bound is based on the KL-divergence between the posterior and variational dis-
tribution. We real that this upper bound is tighter than the previous Rényi bound and χ-bound.
We proposed the SGD algorithm to optimize the EUBO and develop the reparametrization trick
for easy implementation using prevalent python packages for large scale problems. We compare
the proposed algorithm with vanilla SVI, CHIVI and Rényi-VI. Simulation study shows that the
proposed EUBO-VI algorithm gains improvement on both the test error and log likelihood. We also
observed that the EUBO converges faster, and is tighter than the ELBO even in the early stage of the
optimization procedure. Moreover, with the both upper and lower bound, we are much confidence

Table 2: Bayesian logistic regression: test error

Iris Pima Spectf Wdbc Ionos

Dα=−2-SVI 0.0±0.0 0.240±0.043 0.085±0.046 0.019±0.013 0.128±0.070
CHIVI 0.0±0.0 0.230±0.038 0.080±0.062 0.013±0.013 0.090±0.039

EUBO-SVI 0.0±0.0 0.231±0.045 0.080±0.055 0.014±0.012 0.085±0.045
ELBO-SVI 0.0±0.0 0.235±0.040 0.083±0.058 0.017±0.012 0.089±0.046
Dα=2-SVI 0.0±0.0 0.229±0.042 0.081±0.057 0.014±0.014 0.088±0.0394
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Table 3: Bayesian neural network regression: average test RMSE

EUBO-VI Rényi-VI[21] CLBO-VI [21] ELBO-VI[15] BPB[6]

Boston 2.62±0.16 2.86±0.40 2.71±0.29 2.89±0.17 2.977±0.093
Concrete 4.81±0.22 5.15±0.25 5.04±0.27 5.42±0.11 5.506±0.103
Energy 0.94±0.08 1.00±0.18 0.95±0.15 0.51±0.01 1.734±0.051
Kin8nm 0.08±0.00 0.08±0.00 0.08±0.00 0.08±0.00 0.098±0.001
Naval 0.01±0.01 0.00±0.01 0.00±0.00 0.00±0.00 0.006±0.000
Combined 4.07±0.10 4.13±0.04 4.03±0.06 4.07±0.04 4.052±0.031
Protein 4.41±0.05 4.65±0.07 4.43±0.05 4.45±0.02 4.623±0.009
Wine 0.60±0.03 0.62±0.03 0.61±0.03 0.63±0.01 0.614±0.008
Yacht 0.75±0.05 0.94±0.23 0.87±0.18 0.81±0.05 0.778±0.042

Table 4: Bayesian neural network regression: average negative test LL(lower is better)

EUBO-SVI Rényi-VI[21] CLBO-VI[21] ELBO-VI[15] BPB[6]

Boston 2.37±0.02 2.46±0.16 2.40±0.09 2.52±0.03 2.579±0.052
Concrete 2.83±0.03 3.04±0.07 3.02±0.03 3.11±0.02 3.137±0.021
Energy 1.63±0.03 1.67±0.05 1.65±0.04 0.77±0.02 1.981±0.023
Kin8nm -1.16±0.01 -1.14±0.02 -1.14±0.02 -1.12±0.01 -0.901±0.010
Naval -3.81±0.05 -4.11±0.11 -4.17±0.01 -6.49±0.04 -3.735±0.004

Combined 2.82±0.01 2.84±0.04 2.81±0.02 2.82±0.01 2.819±0.008
Protein 2.87±0.02 2.93±0.00 2.89±0.01 2.91±0.00 2.950±0.002
Wine 0.92±0.03 0.94±0.04 0.93±0.04 0.96±0.01 0.931±0.014
Yacht 1.12±0.02 1.61±0.00 1.52±0.00 1.77±0.01 1.211±0.044

with the model fitness. This upper bound VI not only provided for variational inference for complex
model, but also provide an easy accessible upper bound for model criticism.
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Appendix

Gradient of the EUBO

We present two ways to derive the gradient of the EUBO Uλ. Reform Uλ as an integration with
q(θ;λ), that is

∫
q(θ;λ)

(
p(θ|D)
q(θ;λ)

)
log p(D,θ)

q(θ;λ) dθ, and denote w(θ) = p(D,θ)
q(θ;λ) , ŵ(θ) = p(θ|D)

q(θ;λ) . Note
that ∇λ logw(θ) = ∇λ log ŵ(θ) + ∇λ log p(D) = ∇λ log ŵ(θ). We can derive the gradient as
follows,

∇λU = ∇λ
∫
q(θ;λ)ŵ(θ) logw(θ)dθ

=

∫
∇λ [q(θ;λ)ŵ(θ) logw(θ)] dθ

=

∫
∇λq(θ;λ)ŵ(θ) logw(θ)dθ +

∫
q(θ;λ)∇λŵ(θ) logw(θ)dθ +

∫
q(θ;λ)ŵ(θ)∇λ logw(θ)dθ

= Eq [ŵ(θ) logw(θ)∇λlogq(θ;λ)] + Eq [logw(θ)∇λŵ(θ)] + Eq [ŵ(θ)∇λ logw(θ)]
= Eq[ŵ(θ) logw(θ)∇λlogq(θ;λ)] + Eq[logw(θ)ŵ(θ)∇λ logw(θ)] + Eq[ŵ(θ)∇λ logw(θ)]
= Eq[ŵ(θ) logw(θ)∇λlogq(θ;λ)] + Eq[logw(θ)ŵ(θ)(∇λ log p(D, θ)−∇λ log q(θ;λ))] + Eq[ŵ(θ)∇λ logw(θ)]
= Eq[ŵ(θ) logw(θ)∇λ log p(D, θ)] + Eq[ŵ(θ)[∇λ log p(D, θ)−∇λ log q(θ;λ)]dθ
= Eq[ŵ(θ)(logw(θ) + 1)∇λ log p(D, θ)]− Eq[ŵ(θ)∇λ log q(θ;λ)]

In another way, we assume the posterior p(θ|D) and the joint distribution p(D, θ) has no relation to
the parameter λ of the variational distribution, that is∇λp(θ|D) = 0 and∇λ log p(D, θ) = 0. So we
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have,

∇λU = ∇λ
∫
p(θ|D) log p(D, θ)

q(θ;λ)
dθ

=

∫
∇λ [p(θ|D)(log p(D, θ)− log q(θ;λ))] dθ

=

∫
∇λp(θ|D)(log p(D, θ)− log q(θ;λ))dθ +

∫
p(θ|D)∇λ(log p(D, θ)− log q(θ;λ))dθ

= −
∫
q(θ;λ)

p(θ|D)
q(θ;λ)

∇λ log q(θ;λ)dθ

= −Eq[ŵ(θ)∇λ log q(θ;λ)]

where ŵ(θ) = p(θ|D)
q(θ;λ) , in the last step we take importance sampling from q(θ;λ), instead of directly

sampling from p(θ|D).

The relation between KL-divergence and α-divergence/χn-divergence

We show that the KL-divergence DKL(p||q) is a tighter divergence than α-divergence Dα(q||p) (for
α < 0). By the Jensen’s inequality, we known that for a concave function, such as f(·) = log(x) for
x > 0, we have f(E[x]) ≥ E[f(x)]. So we have,

Dα(q(θ)||p(θ|D)) =
1

1− α
log

∫
q(θ)

(
p(θ|D)
q(θ)

)1−α

dθ

=
1

1− α
log

∫
p(θ|D)

(
p(θ|D)
q(θ)

)−α
dθ

≥ 1

1− α

∫
p(θ|D) log

[(
p(θ|D)
q(θ)

)−α]
dθ

=
−α
1− α

DKL(p(θ|D)||q(θ)).

Given this inequality, it is easy to find the relation between their corresponding bounds,

Uα(λ) =
1

1− α
logEq[(

p(D, θ)
q(θ;λ)

)1−α]

=
1

1− α
logEq[(

p(θ|D)
q(θ;λ)

)1−α] +
1

1− α
log p(D)1−α

≥ −α
1− α

DKL(p(θ|D)||q(θ)) + log p(D)

=
−α
1− α

∫
p(θ|D) log p(D, θ)

q(θ;λ)
dθ +

1

1− α
log p(D)

=
−α
1− α

U(λ) + 1

1− α
log p(D).

Let α = 1 − n, then we get similar inequalities between the χn-divergence Dχn(q||p) and the
KL-divergence DKL(p||q), and their corresponding bounds.
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