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Abstract

From a set of observed trajectories of a partially observed system, we aim to learn
its underlying (physical) process without having to make too many assumptions
about the generating model. We start with a very general, over-parameterized
ordinary differential equation (ODE) of order N and learn the minimal complexity
of the model, by which we mean both the order of the ODE as well as the minimum
number of non-zero parameters that are needed to solve the problem. The minimal
complexity is found by combining the Variational Auto-Encoder (VAE) with Auto-
matic Relevance Determination (ARD) to the problem of learning the parameters
of an ODE which we call Rodent. We show that it is possible to learn not only
one specific model for a single process, but a manifold of models representing
harmonic signals in general.

1 Problem definition

We are concerned with models of time seriesX = [x1,x2, . . . ,xK ] with xi ∈ Rd that are generated
by discrete-time noisy observations of a continuous-time process

xk = H(ξ(∆tk)) + ek, (1)
where k = 1 . . .K, ek ∼ N (0, σ2

eI). The partial observation operator H has fixed sampling intervals
∆t, and the temporal evolution of the state variable ξ(t) ∈ RN is governed by a dynamical system
described by an ODE:

∂ξ

∂t
=f(θ, t) ≈Wξ + b. (2)

For simplicity, we use linear ODEs with unknown parameters θ = {W , b}, however, the method is
applicable to any differentiable dynamical system. The order of the ODE is given by dim(ξ) = N.
The solution of the ODE for given parameters θ and initial conditions ξ(0), is ξ(t) = ψ(θ, ξ(0), t).

We aim to learn the structure of the ODE model from a training set of L trajectories {Xi}Li=1
generated by the same generative process but with different parameters and different initial conditions,
for each trajectory, i.e.

Xi =H(ψ(θi, ξi(0), t)) + e, (3)
where t = [0,∆t, . . . ,K∆t]. Assuming we observe a system with expected order M and unknown
structure, we choose N ≥M . Eq. 3 thus defines a generative model of sequencesXi from the latent
space of parameters θ and initial conditions ξ(0). Following the variational autoencoder approach [1],
we define the latent space z = [θ, ξ(0)] with the ODE (2) playing the role of the decoder. We seek an
encoder in the form of a distribution q(z|x), parametrized by a deep neural network. Moreover, we
use a constrictive prior p(z) to promote sparsity on z to obtain a simple model, which is important
for the explainability of the learned model. We will use the normal-gamma prior proposed in [2] and
recently used e.g. in Bayesian compression of Neural Networks [3, 4].

∗Tomáš Pevný is also with Avast Software s.r.o

4th workshop on Bayesian Deep Learning (NeurIPS 2019), Vancouver, Canada.



Dense part of φω
only first N steps

Conv. part of φω
full time series

ξ

θ

ODE solver
H(ψ(θ, ξ))

N (z|φω(x),σz)

N (0,λz)

N (x|H(ψ(z)), σx)

Figure 1: Schematic of the Rodent. Inputs and outputs in grey, latent dimension z = [θ, ξ(0)] in
the middle in brown. The encoder network φω on the left represents the mean of the posterior. It
consists of a dense part to estimate the initial conditions and a convolutional part that is responsible
for the ODE parameters. By using convolutions for the parameter estimation we enable the network
to process time series of variable lengths. The decoder on the right is a combination of an ODE solver
and the observation operator H . The latent variable has the ARD prior N (0,λz).

2 Rodent – Relevant ODE identifier

By combining ODE state and parameters in a latent variable z = [θ, ξ(0)] we can define the data
likelihood as

p(x|z) = N (x|H(ψ(z)), σ2
x). (4)

With the decoder being an ODE solver (not a neural network), the resulting structure of the latent
space allows for an interpretation e.g. in terms of physical properties of the model.

To determine the structure of the ODE, we employ the Automatic Relevance Determination (ARD,
developed by [5, 2]) prior on the latent layer:

p(z) = N (z|0, diag(λ2
z)) p(λz) = 1/λz. (5)

where a new vector variable λz > 0 of the same dimenson as z has been introduced. We will treat
λz as an unknown variable and we will seek its point estimate.

The approximated posterior distribution of the latent variable given the observed sequence is pre-
scribed by

p(z|x) = N (z|φω(x),σ2
z) (6)

where mean µz = φω(x) is a deep neural network with parameters ω, and both standard deviations
λz , and σz are shared for all x.

The parameters of the posterior are obtained by maximization of the Evidence Lower Bound (ELBO):

ELBO = Ep(z|x) [log p(x|z)]− KL(p(z|x)||p(z)). (7)

By applying the reparametrization trick and Monte-Carlo sampling inside the expectation we can
perform stochastic gradient descent on the ELBO:

ELBO =

n∑
i=1

Ep(z|x)

[
(xi − ψ(φω(xi) + σz � ε))2

2σ2
e

]
+
nd

2
log(σe)

+

n∑
i=1

(
log

(
λ2
z

σ2
z

)
−m+

σ2
z

λ2
z

+
φω(xi)

2

λ2
z

)
,

(8)

with noise ε ∼ N (0, I), reconstruction H(ψ(θ, ξ(0))) ≡ φ(z), and dim(z) = m. The ELBO is
maximized with respect to the parameters of the encoder, and the variances λz, σe. The resulting
algorithm is a relevance determination of ODEs (Rodent). A schematic of the Rodent is shown in
Fig. 1. The encoder network consists of two parts. A dense network that receives only few steps of
the beginning of the time series. It is responsible for predicting the initial state ξ(0). The second part
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of the encoder is a convolutional neural network (CNN) and predicts the ODE parameters θ. The
CNN averages over the time dimension after the convolutions, which makes it possible to use samples
of different length. Out approach unifies the following four aspects, which extend the conventional
Variational Autoencoder:

• Explainability. The parameters of the latent vector z are decoded through an ODE
solver, which makes the latent codes physically interpretable.

• Sparsity. The automatic relevance determination prior on the latent vector z en-
courages the simplest solution with fewest non-zero parameters.

• Time series. The convolutional part of the encoder is agnostic to different time
series lengths.

• Partial observations. Rodent allows learning of an ODE without the knowledge of
trajectories of all state variables. The observation operator is assumed to be known.

3 Related work

Bayesian compression Recent work has shown that adopting a Bayesian point of view to reduce
parameters can significantly reduce computational cost while still achieving competitive accuracy
[3, 4]. These approaches focus on pruning network weight or complete neurons in order to decrease
computational cost and reduce overfitting. Our approach, however, enforces sparsity only on the
latent variable and the main goal is interpretability of the latent variable.

Learning differential equations Identifying the parameters of differential equations purely from
data has been addressed by a range of different approaches. Some using linear methods such as [6],
others with Gaussian Processes or other kernel methods [7, 8], or Koopman theory [9, 10] which
relies on finding a transformation into a higher dimensional space in which the ODE becomes linear.
Combining Koopman theory and autoencoders has produced promising results, such as learning the
ODE for a non-linear pendulum and the Lorenz system [11]. While the Koopman approach provides
very accurate predictions once its nonlinear transformation is found, it lacks explainable results which
we provide by learning the ODEs directly.

Discovering physical concepts purely from the data is a new field that neural networks are being
applied to. Learning physically relevant concepts of the two body problem was recently solved both
by Hamiltonian Neural Networks [12, 13] and by very problem specific VAE architectures [14].

Hyper networks are neural nets that generate weights for another network [15]. Learning all the
parameters of an ODE through an encoder is a similar approach because the ODE can be regarded as
a simple neural net. It is of course possible to represent the ODE with more complicated architectures,
but this makes the learned parameters harder to interpret.

4 Identification of harmonic oscillator

We demonstrate the performance of Rodent on the problem of identification of a generative model of
harmonic signals. For a frequency ω, the signal can be generated by a second order ODE ξ̈ = −ω2ξ
which can be written as a system of first order equations[

ξ̇

ξ̈

]
=

[
0 1
−ω2 0

] [
ξ

ξ̇

]
+

[
0
0

]
. (9)

The RHS of Eq. 9 is a 2× 2 dense layer with weightsW , bias b and input ξ. We want to learn both
the network parameters and the initial conditions which means we have eight parameters of which
only four are relevant: "1", "ω2", and the two initial conditions ξ(0) and ξ̇(0). To show that we can
learn the simplest manifold of harmonic signals we over-parameterize the problem with a third order
ODE (equivalent to a 3× 3 dense layer). The third order ODE has 15 parameters in total, of which
still only four are relevant. The observation operator H is defined such that only the first component
of the state enters into the ELBO:

φ(z) = H · ψ(θ, ξ(0)) = [1, 0, 0] · ψ(θ, ξ(0)). (10)
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To demonstrate the advantage of the ARD prior, we train a Rodent and its variant lacking the ARD
prior (called Odent) to reconstruct harmonic signals sampled from

p(x|ω, α0, σe) = N (x| sin(ωt+ α0), σe), (11)

where p(α0) = U(0, 2π) and p(ω) = U(0.5, 3). For both Rodent and Odent the dense part of
the encoder (which predicts ξ(0)) has two relu layers with 50 neurons. The convolutional part
(responsible forW and b) has four convolutional layers with 16 channels and a filter size of 3× 1.
An example of a single reconstruction and its generating latent code is shown in Fig. 2.
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Figure 2: Rodent reconstruction compared to true data on the left. The heatmaps on the right show
the corresponding encodings for the weightsW , biases b, and initial conditions ξ. It is clearly visible
that the Rodent reduced the latent space to the four truly relevant parameters (see Eq. 9).

The learnt structures of the latent codes for samples from Eq. 11 are shown in Fig. 4. Both Rodent
and Odent learn a reduced structure of the latent space, but we can clearly see that the pruning is
much more effective in the Rodent. It keeps only the four relevant parameters with the rest being
almost exactly zero, while without ARD five parameters remain and the rest being not as close to
zero.
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Figure 3: Latent codes of the Rodent compared to Odent. All redundant parameters are pushed to
zero by Rodent while Odent keeps one irrelevant parameter (W22 ). Additionally we can see that the
Rodent squeezes irrelevant parameters closer to zero than Odent.

To show that the Rodent has learnt the manifold of harmonic signals, Fig. 4 shows the anomaly score
(i.e. reconstruction error) of harmonic samples with frequencies {2.8, 2.9, . . . , 3.9, 4} (recall that
the training set contained only frequencies up to 3), random Gaussian noise (denoted by “r”), and a
square signal of a frequency within the trained range (denoted by “s”). Brown boxes represent the
score of samples where the latent variables were taken directly from the encoder. Their score quickly
increases as the frequency increases beyond the trained frequency range (i.e. over 3). If we reidentify
the parameters, the Rodent can extrapolate much further than Odent while still detecting noise and
square signals as anomalies (not being compatible with the generative model).

Reidentification During reidentification we sample a batch of latent codes from the encoder for
each input sample. The latent samples are used as starting points for another optimization of the
reconstruction error R

R = MSE(φ(z)− x), (12)

while keeping fixed all parameters that were identified as irrelevant (note that only the decoder φ
enters in R). In case of the Rodent only four parameters, namely W13, W31, ξ1, and ξ3, were found
to be relevant, so only those are allowed to change during the optimization with respect to R. This
means that we stay in the identified model manifold, but are able to extrapolate far beyond the training
range. Signals that fall outside of the model manifold such as the square signal are still identified as
anomalous as shown in Fig. 4.

4



2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 s r
0

100

200

300

400

500

Signal type

R
ec

on
st

ru
ct

io
n

er
ro

r

Rodent

encoded
reidentified

2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 s r

0

500

1000

1500

Signal type

R
ec

on
st

ru
ct

io
n

er
ro

r

Odent

encoded
reidentified

Figure 4: Reconstruction error of time series that are generated by different models: sine waves of
frequency ω = {2.8, . . . , 4.0}, (denoted by the frequency value on x-axis), square signal (“s”) and
random noise (“r”). Reconstruction error based on parameters from the encoder in brown, error based
on reidentified parameters in green.

5 Identification of superimposed harmonic oscillators

Many interesting signals are superpositions of different processes, so in this section we show that the
Rodent can learn the superposition of harmonic signals as well. We sample time series from

p(x|α0, σe) = N (x| sin(ω1(t+ ∆t)) + sin(ω2(t+ ∆t)), σe), (13)

where ω1 = 0.5, ω2 = 0.8, and p(∆t) = U(0, 2π/ω1). For this problem the Rodent would optimally
learn that the signal is the superposition of two harmonic oscillators, so we need a state size of four
(two times the state size of a single harmonic oscillator). In order to make a super position of the
two oscillators possible while still keeping the assumptions on the observation operator minimal
(H = [1, 0, 0, 0, 0]), we increase the state size to five. The optimal solution of the problem is then
given by: 

ξ̇

ξ̇1

ξ̈1

ξ̇2

ξ̈2

 =


0 1 0 1 0

0 1 0 0 0

−ω2
1 0 0 0 0

0 0 0 1 0

0 0 −ω2
2 0 0




ξ

ξ1

ξ̇1

ξ2

ξ̇2

 . (14)

An exemplary reconstruction and the corresponding latent space is shown in Fig. 5. We observe that
the Rodent actually learns a representation that is even more compressed than the optimal solution.
The learned latent space is missing one component in the initial state, which means that we have not
learned a superposition of two harmonic oscillators but a different ODE that can reconstruct Eq. 13.
This becomes clearly visible when plotting the full state trajectory that is visible in Fig. 7A.
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Figure 5: Reconstruction of a double harmonic signal on the left and corresponding latent variables
on the right. The Rodent observes only the first state variable. It is clearly visible that one of the
remaining state variables is compressed to zero, which means that we did not learn a superposition of
harmonic signals.

The easiest way to obtain a decoupled state is to prescribe the state size to four and define the
observation operator as H = [1, 0, 1, 0]. This is still quite a soft assumption, as we are only forcing
the Rodent to find a solution which is an addition of two internal state variables. The reconstructions
and the latent structure for this case are shown in Fig. 6. The corresponding, decoupled state
trajectories are shown in Fig. 7B.
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Figure 6: Reconstruction of double harmonic signal and corresponding latent variables. The observa-
tion operator H = [1, 0, 1, 0] replaces the fifth state variable, which is why the only non-zero values
are on the counter-diagonal.
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Figure 7: State trajectories corresponding to Fig. 5. The first state ξ1 is the reconstruction (A). State
trajectories to Fig. 6 (B). The states on the right show two clearly decoupled harmonic oscillators
with the expected phase shift of α0 = π/2 between ξi and its time derivative ξ̇i.

6 Conclusion

This work aimed to identify the structure of a partially observed dynamical system modeled by an
ODE. We used ARD to promote sparsity, which (i) identifies a model that is as simple as possible
including the order of the ODE; (ii) improves the explainability of the learnt model; (iii) improves
the performance on samples not present in the training set (extrapolation). All these properties and
advantages were demonstrated on dynamics of harmonic oscillators. We plan to apply the Rodent to
real problems in future work.
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Appendix: Reidentification with Rodent

5 10 15 20 25 30
-1.0

-0.5

0.0

0.5

1.0
Reconstruction = 2.5

Rec.
Truth

W

-2.87

0.02

0.02

-0.01

0.17

0.1

0.02

-0.05

1.9

-0.49

0.09

0.7

b

-0.0

0.02

0.08

5 10 15 20 25 30
-1.0

-0.5

0.0

0.5

1.0
Reconstruction = 2.5

Rec.
Truth

W

-3.79

0.02

0.02

-0.01

0.17

0.1

0.02

-0.05

1.55

-0.31

0.09

0.9

b

-0.0

0.02

0.08

3

2

1

0

1

2

3

3

2

1

0

1

2

3

Figure 8: Rodent reconstructions and encodings of a harmonic signal in the upper plots. Reidentified
reconstruction and encodings in the bottom. The values of the latent codes only change were the
variables were detected as relevant.
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Figure 9: Rodent reconstructions and encodings of a harmonic signal in the upper plots. Reidentified
reconstruction and encodings in the bottom. The values of the latent codes only change were the
variables were detected as relevant. Recall that the Rodent was only trained with frequencies in the
range of ω = (0.5, 3).
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Figure 10: Rodent reconstructions and encodings of a harmonic signal in the upper plots. Detailed
description in the caption of Fig. 9.

5 10 15 20 25 30

-1

0

1

2

Reconstruction = randn
Rec.
Truth

W

-3.55

0.05

-0.04

-0.12

0.06

0.03

0.03

0.09

2.34

0.46

0.05

-0.63

b

-0.0

-0.1

0.06

5 10 15 20 25 30

-1

0

1

2

Reidentification = randn
Rec.
Truth

W

-1.63

0.05

-0.04

-0.12

0.06

0.03

0.03

0.09

1.53

0.3

0.05

-0.1

b

-0.0

-0.1

0.06

3

2

1

0

1

2

3

3

2

1

0

1

2

3

Figure 11: Rodent reconstructions and encodings of a harmonic signal in the upper plots. Detailed
description in the caption of Fig. 9.
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