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Abstract

We place an Indian Buffet Process (IBP) prior over the neural structure of a
Bayesian Neural Network (BNN), thus allowing the complexity of the BNN to
increase and decrease automatically. We apply this methodology to the problem of
resource allocation in continual learning, where new tasks occur and the network
requires extra resources. Our BNN exploits online variational inference with
relaxations to the Bernoulli and Beta distributions (which constitute the IBP prior),
so allowing the use of the reparameterisation trick to learn variational posteriors
via gradient-based methods. As we automatically learn the number of weights in
the BNN, overfitting and underfitting problems are largely overcome. We show
empirically that the method offers competitive results compared to Variational
Continual Learning (VCL) in some settings.

1 Introduction

In continual learning a model is required to learn a set of tasks, one by one, and to remember
solutions to each. After learning a task, the model loses access to the data [1–3]. More formally,
in such continual learning problems we have a set of M sequential prediction tasks T Mi=1 where
D1 =

{
(xi, yi)

N1
i=1

}
∈ T1, D2 =

{
(xi, yi)

N2

i=N1+1

}
∈ T2, ..., DM =

{
(xi, yi)

NM

i=NM−1+1

}
∈ TM .

When performing task Tt the learner typically loses access to D<t, yet must be able to continue to
perform predictions for all the tasks T≤t [4].

The core challenges of continual learning are threefold. Firstly, models need to leverage transfer
learning from previously learned tasks during the learning of a new task at time t [5, 1, 6, 7]. Secondly,
the model needs to have enough new neural resources available to learn the new task [6, 3, 8, 1].
Finally, the model is required to overcome catastrophic forgetting of old tasks. If the model, for
example, is a feed-forward neural network it will exhibit forgetting of previous tasks [1, 9].

One of the popular ways to perform continual learning uses the natural sequential learning approach
embedded within Bayesian inference, namely that the prior for task Tt is the posterior obtained from
the previous task. This enables knowledge transfer and offers an approach to overcome catastrophic
forgetting. Previous Bayesian approaches have involved Laplace approximations [1, 10, 7] and
variational inference [2, 11, 4], to aid in computational tractability. Whilst such methods solve, in
principle, the first and third objectives of continual learning, the second objective (that of ensuring
adequate resources for new learning) is not necessarily achieved. For example, additional neural
resources can alter performance on MNIST classification (see Table 1 in [8]). The problem is made
more difficult as neural resources required for a good solution for one task might not be sufficient (or
may be redundant) for a different task.
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Figure 1: Left, Comparison of weight pruning for the IBP BNN on MNIST and a comparison with a
BNN with no IBP prior. We prune weights of each network according to the absolute value of the
weights and the signal to noise ratio |µ|/σ and apply the ’binary’ znk mask to activation outputs from
the IBP prior BNN. These curves are an average of 5 separate optimisations ± one standard error.
Middle, the matrix Z for a batch in the test set to demonstrate which neurons are active. Notice
that Z is not perfectly binary as it has been relaxed with a Concrete distribution. Right, a histogram
showing the number of active neurons for each point in the test set.

Non-Bayesian neural networks use additional neural resources to remember previous tasks and learn
a new task. Neurons which have been trained on previous tasks are frozen and a new neural network
is appended to the existing network for learning a new task [6]. The problem with this approach is
that of scalability: the number of neural resources increases linearly with the number of tasks. The
work of [3] tackles this problem with selective retraining and expansion with a suitable regulariser
to ensure that the network does not expand continuously. However, these expandable networks are
unable to shrink and are vulnerable to overfitting if misspecified to begin with. Moreover, knowledge
transfer and the prevention of catastrophic forgetting are not solved in a principled manner, unlike
approaches couched in a Bayesian framework. We summarise several solutions to the general problem
in section B in the appendix.

As the level of resource required is unknown in advance, we propose a Bayesian neural network which
adds or withdraws neural resources automatically, in response to the data. We achieve this by using a
sparse binary latent matrix Z, distributed according to a structured Indian Buffet Process (IBP) prior.
The IBP prior on an infinite binary matrix, Z, allows inference on which, and how many, neurons
are required for a predictive task. The weights of the BNN are treated as non-interacting draws from
Gaussians [8]. Catastrophic forgetting is overcome by repeated application of the Bayesian update
rule, embedded within variational inference [12, 2]. In the next section we detail the model and in
Section 3 we provide representative results.

2 Expandable Bayesian Neural Network with an Indian Buffet Process prior

We start by considering the matrix factorisation problem X = ZA where X ∈ RN×D, Z ∈ ZN×K2

and A ∈ RK×D. Each column of Z, a binary matrix, corresponds to the presence of a latent feature
from A. With znk = 1, the latent feature k is present in observation Xn. In the scenario where we
do not know the number of features K beforehand and we desire a prior that allows the number of
non-zero columns of Z to be inferred then the IBP provides a suitable prior on Z [12].

In our proposed model we use Z distributed according to a nonparametric IBP prior, which induces a
posterior to select neurons and their number. We consider a neural network with kl neurons in each
of its l = {1, · · ·L} layers. Thence, for an arbitrary activation f , the binary matrix is applied as
follows: hl = f(hl−1Wl) ◦ Zl where hl−1 ∈ RN×kl−1 , Wl ∈ Rkk−1×kl , Zl ∈ ZN×kl2 , and ◦ is the
elementwise product. We have ignored biases for simplicity. The IBP has some nice properties for
this application, including the number of elements sampled growing with N and promoting a "richer
get richer" scheme [13]. Hence the number of neurons which are selected grows with the number of
points in the dataset and the same neurons will be selected by the IBP enabling learning. This neuron
selection scheme is in contrast to dropout which randomly selects weights.

We use a stick-breaking IBP prior [14, 12], in which a probability πk ∈ [0, 1] is assigned to the
column Zk. Whether a neuron is active for data point Xn is determined by znk ∼ Bern(πk). Here πk
is generated via the so-called stick-breaking process: vk ∼ Beta (α, 1) and πk =

∏k
i=1 vi. As a result,
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(b) MNIST + noise
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(c) MNIST + background image

Figure 2: Continual learning average accuracies on task specific test sets for different datasets and for
different models. The BNN with a IBP prior is compared to baselines BNNs with no IBP prior and
with fixed hidden state sizes h ∈ {5, 10, 50}. The accuracies reported are an average of 5 different
optimisations. Break-downs of task accuracies versus the number of tasks the model has seen are
available in the appendix E.

πk decreases exponentially with k. The Beta parameter α controls how quickly the probabilities
πk decay. By learning the Beta parameters we can influence how many neurons are required for a
particular layer and for a particular task.

Our expandable BNN has diagonal Gaussian weights, wij ∼ N (µij , σ
2
ij) for all i, j as in [8, 2]

and the binary Z matrices will follow the IBP prior. For continual learning the posterior over the
BNN weights and IBP parameters will form the prior for the new task. In practice, we will use a
variational approximation, where the variational posterior from task Tk is taken as prior for Tk+1.
This will encourage knowledge transfer and prevent catastrophic forgetting. The parameter α of the
IBP prior controls the number of neurons available for task Tt, as it increases (or decreases) this
should encourage the use of more (or less) neurons and hence add (or remove) new computational
resources for learning the new task Tt+1.

The posterior of our model given the data is approximated using structured stochastic variational
inference [15]. The variational Beta parameters act globally over Z, thus the variational approx-
imation we propose here retains some of the structure of the desired posterior. We make use of
the reparameterisation trick [16] together with the Concrete reparamaterisation of the Bernoulli
distribution [17, 18] and the Kumaraswamy reparameterisation of the Beta distribution [19, 20] to
allow stochastic gradients to pass through to the Beta parameters in the hierarchical IBP posterior.
The model is discussed in more detail in section C.

3 Results

We investigate whether the neural sparsity imposed by the IBP prior is sensible. This is done by
weight pruning on the MNIST multi-class classification problem. We compare our approach with a
variational BNN which has the same neural network architecture except without the IBP prior which
commands the structure and number of neurons in a layer. The IBP BNN has an accuracy of 0.95
while the BNN achieved an accuracy of 0.96, however the IBP prior BNN is more robust to pruning;
with pruned weights coincide with those suppressed by the IBP prior. The pruning accuracy is shown
in Figure 1. There is a small improvement in the accuracies by pruning with the signal-to-noise ratio
(snr), defined as (|µki|/σki) ◦ znk for all i. This is expected as MNIST is a relatively simple problem
with good accuracy even on small networks. Note that the sparsity induced by the IBP prior renders
the effects of variational overpruning redundant [21]. Overall, the above results show a sensible
sparsity induced by the variational IBP.

Our main experiments deal with the task of continual learning on various split MNIST datasets. For a
fair comparison, we use multi-head network architectures for all experiments. The baselines are VCL
networks [2] with a single hidden layer with size h ∈ {5, 10, 50}. The sizes are chosen to expose
potential underfitting or overfitting issues. Our model also uses a single layer with a variational
truncation K = 100. The IBP prior BNN outperforms all VCL baseline networks for the split
MNIST tasks which have background noise or background images as shown Figure 2 while having
less than 15 active neurons see Figures 4 and 5. The baseline models overfit on the second task and
subsequently propagate a poor approximate posterior. On split MNIST the h = 5 baseline underfits
and the h ∈ {10, 50} perform well versus our model as this is a simple task and overfitting is difficult
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to expose, see Figure 2a. Continual learning experiments on the not MNIST dataset shows that the
baselines with h ∈ {5, 10} underfit, but the h = 50 performs better than our model on some tasks,
see Figure 6. For all the datasets considered in the continual learning experiments, the BNN with an
IBP prior is able to expand as the model is required to solve more tasks, see Figure 3b to Figure 6b.
Further analysis of the results is presented in the supplementary material in section E and additional
experimental details are presented in section D.

4 Summary

We introduce a structured IBP prior over a Bayesian Neural Network (BNN), with application to
continual learning. The IBP prior effectively induces sparsity in the network, allowing it to add neural
resources for new tasks yet still overcome the overfitting problems which plague VCL networks.
Our goal is continual learning and not to induce sparsity for a parsimonious model or for the sake
of compression, however it would be interesting to compare to BNNs designed for these goals
by introduction of sparsity inducing priors [22, 23]. Natural extensions to this work include the
application of the IBP prior directly to the BNN weights as well as more extensive testing with a
broader range of data-sets, with larger numbers of tasks.
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A Preliminaries

In this section, we describe the Indian Buffet Process prior used in our model and the Variational
Continual Learning (VCL) framework which we use for continual learning.

A.1 Indian Buffet Process Prior

The Indian Buffet Process (IBP) [24, 13, 25] is a stochastic process defining a probability distribution
over sparse binary matrices with a finite number of rows and an infinite number of columns. This
distribution is suitable to use as a prior for models with a potentially infinite number of features.
The form of the prior ensures that only a finite number of features will be present in any finite set
of observations, but allows for extra features to appear as more data points are observed. The IBP
probability density is defined as follows:

p(Z) =
αK∏N
i=1Ki!

exp{−αHN}
K∏
k=1

(N −mk)!(mk − 1)!

N !
(1)

where K is the number of non-zero columns in Z, mk is the number of ones in column k of Z,
HN =

∑N
n=1 1/n is the N -th harmonic number, and Kh is the number of occurrences of the non-

zero binary vector h among the columns in Z. The parameter α controls the expected number of
features present in each observation.

The name of the Indian Buffet Process originates from the metaphor, where the rows of Z correspond
to customers and the columns correspond to dishes in an infinitely long buffet. The first customer
samples the first Poisson(α) dishes. The i-th customer then samples dishes with probability mk/i,
where mk is the number of people who have already sampled dish k. The i-th customer also samples
Poisson(α/i) new dishes. Therefore, znk is one if customer n tried the k-th dish and zero otherwise.

A.2 Variational Continual Learning

The continual learning process can be decomposed into a Bayesian update and approximate inference
of the task Tt−1 posterior can be used as a prior for the new task Tt. Variational Continual Learning
(VCL) [2] uses a BNN to perform a prediction problem where the weights are independent Gaussians
and uses the variational posterior from the previous task as the prior for the next. Consider learning the
first task T1 and let φ denote a vector of parameters, then the variational posterior will be: q1(φ|D1).
For the next task T2, we lose access to D1 and the prior will be q1(φ|D1). The optimisation of the
ELBO yields q2(φ|D2). Generalising, the negative ELBO for the t-th task is:

Lt(φ,Dt) = KL [qt(φ)||qt−1(φ|Dt−1)]− Eφ∼qt(φ) [log p(Dt|φ)] . (2)

The first term acts to regularise the posterior over Tt, ensuring continuity with Tt−1 and second term
is the log likelihood of the data.

B Related work

In this section we discuss the literature on Continual Learning and that associated with the use of the
IBP prior in Deep Learning.

B.1 Continual Learning

Continual Learning can be viewed as a sequential learning problem and an approach to learning
in this setting is through online Bayesian inference [26]. Elastic Weight Consolidation (EWC) is a
seminal piece of work in continual learning which performs online Bayesian inference with a diagonal
Laplace approximation to make Bayesian inference tractable [1]. This reduces to an L2 regularisation
ensuring that the new weights for task t are close to all previous task weights in terms of Euclidean
distance. Synaptic Intelligence (SI) [27] creates an importance measure that is determined by the
loss over the optimisation trajectory and by the Euclidean distance it has moved from the previous
task’s local minimum. SI uses this importance measure to weight an L2 regularisation ensuring that
the optimal weights for Tt are similar to those for Tt−1. Another regularisation based approach, one
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learns the conditional distribution regularised for task Tt−1 so that it is close to that of Tt in terms of
KL-divergence this can also be approximated as an L2 regularisation similarly to EWC and SI [28].
The work of [7] also uses a diagonal approximation to the Fisher information used for the Laplace
approximation for Bayesian approximate inference together with techniques from transfer learning
literature. Instead of approximating the Fisher information as diagonal and ignoring correlations
in parameter space, [10] uses a block-diagonal Kronecker factored approximation which accounts
for covariances between weights of the same layer and assumes independence between the weights
of different layers. Recent work has also been made on variational approximations to sequential
Bayesian inference in continual learning and proposed for discriminative and generative models
[2, 11].

Another approach to continual learning is to expand the neural network model to ensure the predictive
performance on previous tasks is retained and allowing for new neural capacity for learning of new
tasks. One approach is Progressive Networks [6] which freezes weights learnt from previous tasks
and connections are made from the frozen networks to a new network which is trained on the current
task. This allows the Progressive Network to leverage previous knowledge to remember old tasks
and also allows new neural capacity for learning a new task. This solution is linear in the number of
networks needed for T tasks. A more efficient expansion approach is to selectively retrain neurons
and if required, expand the network with a group sparsity regulariser to ensure sparsity at the neuron
level [3].

Several other solutions to continual learning have been proposed, involve replaying data from previous
tasks with a generative model trained to reconstruct Di for i < t [29], storing summaries of data with
coresets [2] or storing random samples from each task [30] and ensuring that loss incurred on this
memory dataset is smaller for Tt than for Tt−1. Combining methods also yield good results, these
include using VCL and generative replay approaches [31] and using Progressive Networks and EWC
to ensure that the number of parameters in the network does not increase with the number of tasks
[32].

B.2 The Indian Buffet Process prior in Deep Learning

The IBP prior has been used for sparse matrix factorisation. The inference for IBP has been performed
in several ways, including Gibbs sampling [33, 13], particle filtering [34], slice sampling [35], and
using variational inference [12]. For generative models in deep learning the IBP has been used to
model the latent state for VAEs, inference has been performed with mean-field variational inference,
using black-box variational inference [36] by [37]. The stick-breaking VAE by [19] introduces a
suitable reparameterisation to handle gradient based learning with the reparameterisation trick [16].
Because the mean-field approximation removes much of the structure of a hierarchical model like the
IBP, [20] uses structured stochastic variational inference [15] to allow dependencies between global
and local parameters and achieve better results in VAEs over the mean-field approximation.

C Inference

In this section we develop a variational approach for performing inference on the posterior distri-
bution of the BNN weights and the IBP parameters. We use a structured variational model where
dependencies are established between global Beta parameters over local parameters which comprise
the BNN hidden layers [15], similarly to [20]. Once we have obtained our variational posterior,
placing our inference procedure within the VCL framework set out in section A.2 is straightforward.
The following set of equations govern the hierarchical IBP prior BNN model for an arbitrary layer
l ∈ {1, ..., L} of a BNN:

vk ∼ Beta (α, 1) , for k ∈ {1, · · ·∞}, (3)

πk =

k∏
i=1

vi, for k ∈ {1, · · ·∞}, (4)

znk ∼ Bern(πk), for k ∈ {1, · · ·∞}, n ∈ {1, · · ·N}, (5)

W l
k. ∼ N (µlk., (σ

l
k.)

2), for k ∈ {1, · · ·∞}, (6)

hlk = f(hl−1W l
k.) ◦ zlnk for k ∈ {1, · · ·∞}, n ∈ {1, · · ·N}. (7)
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k denotes a neuron in layer l, denotes a row from the weight matrix W l
k. and identifies a column of

our binary matrix. ◦ is the elementwise multiplication operation. The binary matrix Z controls the
inclusion of a particular neuron k, W l

k. ∈ Rkl−1 , hl−1 ∈ Rkl−1 and znk ∈ Z2 = {0, 1}.
The closed form solution to the true posterior of our IBP parameters and BNN weights involves
integrating over the joint distribution of the data and our hidden variables, ϕ = {Z,π,W }. Since it
is not possible to obtain a closed form solution to this integration we will make use of variational
inference and the reparameterisation trick [16]. We use a structured variational approximation [15],
this approach has been shown to perform better than the mean-field approximation in VAEs [20]. The
variational approximation used is

q(φ) =

K∏
k=1

q(vk; τk1 , τk2)q(wk.;ωk1., ωk2.)

N∏
n=1

q(znk;πk|vk), (8)

where the variational posterior is truncated up to K, the prior is still infinite [19]. φ = {τ ,v,ω}
denotes the set of variational parameters which we optimise over. Each term in Equation (8) is
specified as follows

q(vk; τk1 , τk2) = Beta(vk; τk1 , τk2), (9)

πk =

k∏
j=1

vj , (10)

q(znk;πk) = Bern(znk;πk), (11)
q(wk.;ωk1., ωk2.) = N (wk.;ωk1., ωk2.). (12)

Now that we have defined our structured variational approximation in Equation (8) we can write
down the objective for task Tt as

argmin
φ

KL (qt(φ)||pt(φ|Dt)) (13)

= argmin
φ

KL (qt(φ)||qt−1(φ|Dt−1))− Eqt(φ)[log p(Dt|φ)]. (14)

In the above formula, qt(φ) is the approximate posterior for Tt and qt−1(φ|Dt−1) is the approximate
posterior for task Tt−1 and prior for Tt. By substituting Equation (8), we obtain the negative ELBO
objective for each task Tt as:

L(φ,Dt) = KL(qt(v)||qt−1(v|Dt−1)) + KL(qt(w)||qt−1(w|Dt−1))

−
∑
n∈Dt

Eqt(φ)[log p(yn|xn, zn.)] + KL(qt(zn.|v)||qt−1(zn.|v,Dt−1)). (15)

To estimate the gradient of the Bernoulli and Beta variational parameters requires a suitable reparame-
terisation. Samples from the Bernoulli distribution in Equation (11) arise after taking an argmax over
the Bernoulli parameters. The argmax is discontinuous and a gradient is not possible to calculate.
We reparameterise the Bernoulli as a Concrete distribution [17, 18]. Additionally we reparameterise
the Beta as a Kumaraswamy distribution for the same reasons [19]; to separate sampling nodes and
parameter nodes in the computation graph (Figure 2 in [18] for clarification) and allow the use of
stochastic gradient methods to learn the variational parameters φ in the approximate IBP posterior.
Variational inference on the Gaussian weights of the BNN, ω in Equation (12) is performed with a
mean-field approximation and identical to [8, 2]. In the next sections we detail the reparameterisa-
tions of the Bernoulli and Beta distributions and show how to calculate the KL-divergence terms in
Equation (15).

C.1 The variational Gaussian weight distribution reparameterisation

The variational posterior over the weights of the BNN are diagonal Gaussian wk. ∼
N (wk.|ωk1., ωk2. 1). By using a reparameterisation, one can represent the BNN weights using
a deterministic function wk. = gφ(ε), where ε ∼ N (0,1) is an auxiliary variable and gφ(.) a
deterministic function parameterised by φ = (ωk1., ωk2.). The BNN weights can be sampled directly
through the reparameterisation: wk. = ωk1. + ωk2.ε. By using this simple reparameterisation the
weight samples are now deterministic functions of the variational parameters ωk1. and ωk2. and the

9



noise comes from the independent auxiliary variable ε [16]. Taking a gradient of our ELBO objective
in Equation (15) the expectation of the log-likelihood may be rewritten by integrating over ε so that
the gradient with respect to ωk1. and ωk2. can move into the expectation allowing for gradients to be
calculated using the chain rule [8].

C.2 The variational Beta distribution reparameterisation

The Beta distribution can be reparameterised using the Kumaraswamy distribution [19] with parame-
ters a and b. The Kumaraswamy distribution has a density

p(x; a, b) = abxa−1(1− xa)b−1. (16)

When a = 1 or b = 1 the Kumaraswamy and Beta are identical. This reparameterisation has been
used successfully to learn a discrete latent hidden representation in a VAE where the parameters a
and b are learnt using stochastic gradient descent [19, 20]. The Kumaraswamy distribution can be
reparameterised as

p(x; a, b) ∼ (1− u1/b)1/a, (17)

where u ∼ U[0, 1] from the Uniform distribution.

The KL divergence between our variational Kumaraswamy posterior and Beta prior has a closed
form:

KL [q(vk; a, b)||p(vk;α, β)] =
a− α
a

(
−γ − ψ(b)− 1

b

)
+ log ab+ logB(α, β) (18)

− b− 1

b
+ (β − 1)b

∞∑
m=1

1

m+ ab
B
(m
a
, b
)
, (19)

where γ is the Euler constant, ψ is the digamma function, B is the beta function and the infinite sum
can be approximated by a finite sum.

C.3 The variational Bernoulli distribution reparameterisation

The Bernoulli distribution can be reparameterised using a continuous approximation to the dis-
crete distribution. If we have a discrete distribution (α1, · · ·αK) where αj ∈ {0,∞} and
D ∼ Discrete(α) ∈ {0, 1}, then P (Dj = 1) =

αj∑
k αk

. Sampling from this distribution requires
performing an argmax operation, the crux of the problem is that the argmax operation doesn’t have
a well defined derivative.

To address the derivative issue above, we use the Concrete distribution [17] or Gumbel-Softmax
distribution [18] as an approximation to the Bernoulli distribution. The idea is that instead of returning
a state on the vertex of the probability simplex like argmax does, these relaxations return states inside
the inside the probability simplex (see Figure 2 in [17]). We follow the Concrete formulation and
notation from [17] to sample from the probability simplex as

Xj =
exp((logαj +Gk)/λ)∑n
i=1 exp((logαi +Gi)/λ)

(20)

with temperature hyperparameter λ ∈ (0,∞), parameters αj ∈ (0,∞) and i.i.d. Gumbel noise
Gj ∼ Gumbel(0, 1). This equation resembles a softmax with a Gumbel perturbation. As λ→ 0 the
softmax computation approaches the argmax computation. This can be used as a relaxation of the
variational Bernoulli distribution and can be used to reparameterise Bernoulli random variables to
allow gradient based learning of the variational Beta parameters downstream in our model.

When performing variational inference using the Concrete reparameterisation for the posterior, a
Concrete reparameterisation of the Bernoulli prior is required to properly lower bound the ELBO
15. If q(znk;πk|vk) is the Bernoulli variational posterior over sparse binary masks znk for weights
wk. and all data points n ∈ {1, · · ·N} and p(znk;πk|vk) is the Bernoulli prior. To guarantee a lower
bound on the ELBO both Bernoulli distributions require replacing with Concrete densities, i.e.,

KL [q(znk;πk|vk)||p(znk;πk|vk)] ≥ KL [q(znk;πk, λ1|vk)||p(znk;πk, λ2|vk)] , (21)
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Dataset Training set size Test set size

Split MNIST 50, 000 10, 000
Split MNIST + noise 50, 000 12, 000
Split MNIST + background images 50, 000 12, 000
not MNIST 200, 000 10, 000

Table 1: Sizes of the training and test sets for the datasets used.

where q(znk;πk, λ1|vk) is a Concrete density for the variational posterior with parameter πk, temper-
ature parameter λ1 given global parameters vk. p(znk;πk, λ2|vk) is the Concrete prior. Equation (21)
is evaluated numerically by sampling from the variational posterior (we will take a single Monte Carlo
sample [16]). At test time we can sample from a Bernoulli using the learnt variational parameters of
the Concrete distribution [17].

In practice, we use log transformation to alleviate underflow problems when working with Concrete
probabilities. One can instead work with exp(Ynk) ∼ BinConcrete(πk, λ1|vk), as the KL divergence
is invariant under this invertible transformation and Equation (21) is valid for optimising our Concrete
parameters [17]. For binary Concrete variables we can sample from ynk = (log πk + log u −
log(1− u))/λ1 where u ∼ U[0, 1] and the log-density (before applying the sigmoid activation) is
log q(ynk;πk, λ1|vk) = log λ1 − λ1ynk + log πk − 2 log(1 + exp(−λ1ynk + log πk)) [17].

D Experimental details

For all experiments, the BNN architecture used for incorporating the IBP prior has a single layer with
ReLU activation functions, the variational truncation parameter for the IBP variational posterior is set
to K = 100: the maximum number of nodes in our network is 100. At the start of the optimisation
the parameters of the Beta distribution are initialised with αk = 5.0 and βk = 1.0 for all k. The
temperature parameters of the Concrete distributions for the variational posterior and prior are set to
λ1 = 1.0 and λ2 = 1.0 respectively (the prior distribution is also chosen as Concrete in order to find
a proper lower bound of the ELBO for reasons discussed in section C.3). Our implementation of the
IBP is adapted from the code by [20].

Our implementation of the BNN and the continual learning framework is based off of code from [2].
The BNNs use a multi-head network. The Gaussian weights of the BNN have their means initialised
with the maximum likelihood estimators and variances equal to 1. We use an Adam optimiser [38]
and train for 1000 epochs with a learning rate of 0.0001.

For the weight pruning experiment the baseline BNN has a hidden layer of size 100. The only
difference to the details above is that both the BNN and the BNN with IBP prior are trained for 600
epochs.

We summarise the sizes of the datasets used for experiments in table 1.

E Further results on MNIST variants

We elaborate on the results which are presented in section 3. The results are shown for various
MNIST variants and the not MNIST dataset. The accuracies of each task after successive continual
learning steps are show in Figures 3 - 6.

For the split MNIST dataset Figure 3 we note that the IBP prior BNN is able to outperform the 5
neuron VCL, this network is underfitting. One the other hand the 10 and 50 neuron VCL networks
outperform the IBP prior network in particular for tasks 3 to 5. The IBP prior BNN is able to expand
a small amount as the number of tasks increases. Regarding MNIST with background noise1, it is
clear that the IBP prior model outperforms all VCL baselines for all tasks. The IBP prior model
also expands slightly, however it doesn’t extend its capacity past the largest VCL baseline model
considered, h = 50. Similarly the results using an MNIST + random background1 images in general

1The data is obtained from https://sites.google.com/a/lisa.iro.umontreal.ca/public_
static_twiki/variations-on-the-mnist-digits
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(a) Split MNIST task accuracies versus the number of tasks the model has seen and performed the Bayesian
update for. The final plot is a per task average accuracy as shown previously.
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(b) Per task sparse Z matrix for a batch in test set and histograms of the number of active neurons per point in
the test set.

Figure 3: Split MNIST task accuracies versus the number of tasks the model has seen and performed
the Bayesian update for. Our model is compared to VCL benchmarks with different numbers of hidden
states denoted hx, x ∈ {5, 10, 50} in the plot legend. Accuracies are an average of 5 optimisations.
We also show the sparse Z matrix of the IBP prior model after each Bayesian approximate update
together the a histogram of the number of neurons which are active for each data point in the test set.
The average number of neurons which are active per point in the test set is increases steadily from
13.2 to 13.9

shows the IBP prior BNN outperforming all VCL baselines except when the model first sees the
data in tasks 2, 3, and 4. Despite this the IBP prior network forgets these tasks less throughout the
continual learning process. The results for not MNIST 2 show that IBP prior BNN outperforms the
h ∈ {5, 10} BNNs for task 1, 2 and 3. The h = 50 BNN outperforms the IBP prior BNN for all tasks
apart from the first.

Note that the sparse Z matrices shown in Figures 3 to 6 are not binary like in the original IBP
formulation as we use a Concrete relaxation to the Bernoulli distribution. A neuron is defined as
active in the IBP BNN when znk > 0.1 for the Figures 1 and 3b to 6b.

2Data obtained from http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html

12

 http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html


1 2 3 4 5
Tasks

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Task 1 (0 vs. 1)

1 2 3 4 5
Tasks

0.70

0.80

0.90

Task 2 (2 vs. 3)

1 2 3 4 5
Tasks

0.80

0.85

0.90

0.95
Task 3 (4 vs. 5)

1 2 3 4 5
Tasks

0.85

0.90

0.95

Task 4 (6 vs. 7)

1 2 3 4 5
Tasks

0.85

0.88

0.90

0.93

Task 5 (8 vs. 9)
VCL + IBP
VCL h5
VCL h10
VCL h50

1 2 3 4 5
Task

0.85

0.90

0.95

Average accuracy

(a) Split MNIST + noise dataset continual learning task accuracies versus the number of tasks the model has
seen and performed the Bayesian update for. The final plot is a per task average accuracy as shown previously.
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(b) Per task sparse Z matrix for a batch in test set and histograms of the number of active neurons per point in
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Figure 4: Split MNIST with random noise task accuracies versus the number of tasks the model
has seen and performed the Bayesian update for. Our model is compared to VCL benchmarks with
different numbers of hidden states. Accuracies are an average of 5 optimisations. We also show the
sparse Z matrix of the model after each Bayesian approximate update together the a histogram of the
number of neurons which are active for each point in the test set. The average number of neurons
which are active per point in the test set is increases steadily from 13.3 to 14.2
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(a) Split MNIST + background image dataset continual learning task accuracies versus the number of tasks the
model has seen and performed the Bayesian update for. The final plot is a per task average accuracy as shown
previously.
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(b) Per task sparse Z matrix for a batch in test set and histograms of the number of active neurons per point in
the test set.

Figure 5: Split MNIST with random background images task accuracies versus the number of
tasks the model has seen and performed the Bayesian update for. Our model is compared to VCL
benchmarks with different numbers of hidden states. Accuracies are an average of 5 optimisations.
We also show the sparse Z matrix of the model after each Bayesian approximate update together the
a histogram of the number of neurons which are active for each point in the test set. The average
number of neurons which are active per point in the test set is increases steadily from 13.4 to 14.0.
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(a) Split Not MNIST image dataset continual learning task accuracies versus the number of tasks the model has
seen and performed the Bayesian update for. The final plot is a per task average accuracy.
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(b) Per task sparse Z matrix for a batch in test set and histograms of the number of active neurons per point in
the test set.

Figure 6: Split Not MNIST task accuracies versus the number of tasks the model has seen and
performed the Bayesian update for. Our model is compared to VCL benchmarks with different
numbers of hidden states. Accuracies are an average of 5 optimisations. We also show the sparse Z
matrix of the model after each Bayesian approximate update together the a histogram of the number
of neurons which are active for each point in the test set. The average number of neurons which are
active per point in the test set increases steadily from 13.2 to 14.7
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