1 Introduction

We present an approximate inference method, based on a synergistic combination of Rényi α-divergence variational inference (RDVI) and rejection sampling (RS). RDVI is based on minimization of Rényi α-divergence $D_\alpha(p||q)$ between the true distribution $p(x)$ and a variational approximation $q(x)$; RS draws samples from a distribution $p(x) = \tilde{p}(x)/Z_p$ using a proposal $q(x)$, s.t. $Mq(x) \geq \tilde{p}(x)$, $\forall x$. Our inference method is based on a crucial observation that $D_\infty(p||q)$ equals $\log M(\theta)$ where $M(\theta)$ is the optimal value of the RS constant for a given proposal $q_\theta(x)$. This enables us to develop a two-stage hybrid inference algorithm.

There is an increasing interest in developing more expressive variational posteriors for (shallow/deep) latent variable models and Bayesian neural networks [8, 9, 4]. In particular, the combination of MCMC and variational methods have been used in recent work to learn expressive variational posteriors [9] having the best of both worlds. Rejection Sampling [3], which we use as a subroutine (with learned M) in our algorithm α-DRS, is a popular sampling technique that generates independent samples from a complex distribution indirectly through a simple distribution. In addition to being a useful sampling algorithm in its own right, recently approximations of Rejection Sampling have also been used for designing variational inference algorithms. In particular, Variational Rejection Sampling (VRS) [6], which uses rejection sampling to learn a better variational approximation. Recently Rejection sampling has also been used to improve the generated samples from GAN (Generative Adversarial Nets) [1] and improve priors for variational inference [2].

2 Connecting Rejection Sampling with Rényi α-Divergence

We now show how Rényi α-divergence is related to rejection sampling, and how this connection can be leveraged to finetune the q_θ estimated by RDVI using q_θ as a proposal distribution of a rejection sampler, and generating a sample-based approximation of the exact distribution. The connection between Rényi α-divergence and rejection sampling is made explicit by the following result

Theorem 1. When $\alpha \to \infty$, the Rényi α divergence becomes equal to the worst-case regret [10 Theorem 6].

$$\lim_{\alpha \to \infty} D_\alpha(p||q_\theta) = \log \max_{x \in \mathcal{X}} \frac{p(x)}{q_\theta(x)}$$ (1)

It is interesting to note that $\lim_{\alpha \to \infty} D_\alpha(p||q_\theta)$ in Eq. (1) is equal to the log of the optimal $M(\theta)$ value used in Rejection Sampling. It is easy to show that $q_\theta(x) \left(\max_{x \in \mathcal{X}} \frac{p(x)}{q_\theta(x)} \right) \geq p(x), \forall x \in \text{supp}(p(x))$.

4th workshop on Bayesian Deep Learning (NeurIPS 2019), Vancouver, Canada.
In Rényi α-divergence variational inference \cite{7}, we learn the variational parameters θ such that the value of α divergence is minimized. Therefore, minimizing Rényi α divergence of ∞ order can serve the following purposes:

- We can learn the optimal variational distribution $q_\theta(x)$.
- We can learn the optimal value $M(\hat{\theta})$ (expected number of iterations needed to generate one sample) such that rejection sampling could be performed with fewer rejections.
- The above rejection sampler can be used to “refine” q_θ using a sample-based approximation.

Although the above idea seems like an appealing prospect, optimizing Rényi α divergence of ∞ order is problematic. Instead of using Rejection Sampling for ∞ order α-divergence, we will develop an approximate version of Rejection sampling for finite order α-divergence.

2.1 α-Divergence Rejection Sampling

In this section, we summarize our algorithm α-Divergence Rejection Sampling (α-DRS) which augments the α divergence \cite{7} method. The algorithm requires an input α, the target distribution $p(x) = \tilde{p}(x)/Z_p$, and the variational distribution $q_\theta(x)$. Our algorithm α-DRS consists of two stages.

- In stage-1, given an input α, we minimize the Monte-Carlo estimate of the exponentiated version of finite order α-divergence \cite{5} with respect to the variational parameters θ, i.e.,

$$
\hat{\theta} = \arg\min_\theta \frac{1}{S} \sum_{s=1}^{S} \left(\frac{\tilde{p}(x_s)}{q_\theta(x_s)} \right)^\alpha,
$$

(2)

Here x_s are iid samples drawn from $q_\theta(x)$.

- From stage-1, we learned the optimal $\hat{\theta}$. For the second stage we will learn T from equation \cite{5} and perform approximate Rejection Sampling \cite{9} to learn a refined distribution $r_\hat{\theta}(x)$.

The acceptance probability for approximate RS is as follows:

$$
\alpha_\hat{\theta}(x|T) = \frac{1}{1 + \left(\frac{q_\theta(x)e^{-T}}{\tilde{p}(x)} \right)},
$$

(3)

where T is a hyperparameter controlling the acceptance rate.

Theorem 2. For a fixed θ, the approximate Rejection sampling always improves the Rényi α divergence between the estimated and actual posterior. The acceptance probability is approximated by equation \cite{9}. The proof of the theorem can be found in the supplementary material.

$$
D_\alpha(p||r) \leq D_\alpha(p||q)
$$

(4)

2.2 Choosing the hyperparameter T

Although $D_\alpha(p||q)$ is a lower bound on $\log M(\hat{\theta})$ (property of α-divergence), for high dimensions even this may be too large. The hyperparameter T should be defined such that we can control the acceptance rate. Let’s define $L_\theta(x) = -\log \tilde{p}(x) + \log q_\theta(x)$ where $x \sim q_\theta(x)$, and redefine T as

$$
T = \begin{cases}
-D_\alpha(p||q) & \text{For low dimensions} \\
Q_{L_\theta}(\gamma) & \text{For high dimensions}
\end{cases}
$$

(5)

where Q is quantile function defined over the random variable $L_\theta(x)$ with hyperparameter $\gamma \in [0, 1]$. The quantile function Q approach \cite{6} allows us to select samples that have high-density ratios (similar to Rejection sampling) along with a well-defined acceptance rate (around γ for most samples). Note that a similar methodology has been recently employed in Variational Rejection Sampling (VRS) \cite{6} as well.

3 Experiments

In this section, we evaluate our proposed α-DRS algorithm on synthetic as well as real-world datasets. In particular, we are interested in assessing the performance of α-DRS as a method that can improve the variational approximation learned by RDVI.

3.1 Gaussian Mixture Model Toy Example

In this experiment, we have chosen $p(x)$ to be a mixture of four Gaussian distributions.

$$p(x) = \frac{1}{4} \mathcal{N}(-12, 0.64) + \frac{1}{4} \mathcal{N}(-6, 0.64) + \frac{1}{4} \mathcal{N}(0, 0.64) + \frac{1}{4} \mathcal{N}(6, 0.64)$$

The variational distribution $q_0(x)$ is assumed to be a t-distribution with 10 degrees of freedom and parameters μ and $\log \sigma^2$. We have generated 3000 samples from t-distribution to approximate $D_\alpha(p||q)$. The hyperparameter α was learned using Eq. (5) and was used to perform the RS step.

In this case, as evident from Fig. 1, with the RS step, we are able to get a very good approximation of the target density $p(x)$ despite it having multiple modes. Table 1 compares the α-divergence with RS step ($D_\alpha(p||r)$) and without RS step ($D_\alpha(p||q)$).

![Figure 1: Black Plot: Empirical p.d.f. of the generated samples from α-DRS algorithm, Red plot: $p(x)$, Blue plot: learned t-distribution by RDVI](image)

3.2 Bayesian Neural Network

In this section, we will perform approximate inference for Bayesian Neural Network regression. The datasets are collected from the UCI data repository. We have used a single layer NN with 50 hidden units and ReLU activation to model the regression task [7]. Let’s denote the neural network weights by θ having a Gaussian prior $\delta \sim \mathcal{N}(\delta; 0, I)$. The true posterior distribution of NN weights $q(\theta)$ is approximated by a fully factorized Gaussian distribution $q(\theta)$.

All the datasets are randomly partitioned 20 times into 90% training and 10% test data. The stochastic gradients are approximated by 100 samples from $q(\delta)$ and a minibatch of size 32 from the training set. We summarize the average RMSE and test log-likelihood in Table 1. For α-DRS method we have chosen acceptance rate to be around 10% ($\gamma = 0.1$ in equation (5)). We have compared the results of α-DRS method with RDVI and adaptive f-divergence ($\beta = -1$).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>$\alpha = 1.0$</th>
<th>$\alpha = 2.0$</th>
<th>$\alpha = 1.0$</th>
<th>$\alpha = 2.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boston</td>
<td>2.861 ± 0.177</td>
<td>2.991 ± 0.198</td>
<td>3.099 ± 0.196</td>
<td>2.826 ± 0.171</td>
</tr>
<tr>
<td>Concrete</td>
<td>5.343 ± 0.116</td>
<td>5.425 ± 0.121</td>
<td>5.424 ± 0.105</td>
<td>5.292 ± 0.102</td>
</tr>
<tr>
<td>Kin8nm</td>
<td>0.085 ± 0.001</td>
<td>0.084 ± 0.001</td>
<td>0.083 ± 0.001</td>
<td>0.083 ± 0.001</td>
</tr>
<tr>
<td>Yacht</td>
<td>0.810 ± 0.064</td>
<td>1.193 ± 0.082</td>
<td>1.192 ± 0.089</td>
<td>0.772 ± 0.056</td>
</tr>
<tr>
<td></td>
<td>Rényi α average LL</td>
<td>Rényi α average LL</td>
<td>α-DRS average LL</td>
<td>α-DRS average LL</td>
</tr>
<tr>
<td>Boston</td>
<td>-2.482 ± 0.177</td>
<td>-2.516 ± 0.198</td>
<td>-2.549 ± 0.198</td>
<td>-2.444 ± 0.171</td>
</tr>
<tr>
<td>Concrete</td>
<td>-3.094 ± 0.116</td>
<td>-3.107 ± 0.121</td>
<td>-3.10 ± 0.105</td>
<td>-3.082 ± 0.102</td>
</tr>
<tr>
<td>Kin8nm</td>
<td>1.058 ± 0.001</td>
<td>1.072 ± 0.001</td>
<td>1.084 ± 0.001</td>
<td>1.071 ± 0.001</td>
</tr>
<tr>
<td>Yacht</td>
<td>-1.720 ± 0.064</td>
<td>-1.959 ± 0.082</td>
<td>-1.977 ± 0.089</td>
<td>-1.643 ± 0.056</td>
</tr>
</tbody>
</table>

Table 1: Test RMSE and Test LL

4 Conclusion

We have presented a two-stage approximate inference method to generate samples from a target distribution. Our approach, essentially a hybrid of Rényi divergence variational inference and rejection sampling, leverages a new connection between Rényi α-divergences and the parameter M controlling the acceptance probabilities of the rejection sampler. Therefore our method can be seen as a rejection sampling-based algorithm that can finetune the variational approximation produced by RDVI into a more expressive sample-based estimate. Our experimental results demonstrate the clear benefits of these improvements in the context of improving variational approximations via rejection sampling.
References

5 Supplementary Material

In this section, we will show that the approximate Rejection sampling step can further reduce the α-divergence between an exact distribution and approximate posterior distribution.

Notations:

- True distribution $p(x) = \frac{\hat{p}(x)}{Z_p}$, where Z_p is the normalization constant.
- Let’s denote the learned distribution from α-DRS by $r_\theta(x)$. We can write this learned distribution as follows:
 \[r(x) = \frac{q_\theta(x) a_\theta(x|T)}{Z_R(x,T)}, \] \[(6) \]
 where $Z_R(x,T)$ is a normalization constant. For the sake of clarity we will denote $r(x) = \frac{\tilde{r}(x)}{Z_R}$, where Z_R is a normalization constant.

We are making the following assumptions:

- The acceptance probability for every sample can be denoted by $a_\theta(x|T)$, where $T = - \log M$, M is the constant used for approximate rejection sampling. T can be learned through equation (5).
 \[a_\theta(x|T) = \min \left[1, \frac{\hat{p}(x)}{e^{-T} q_\theta(x)} \right] \] \[(7) \]
 \[\approx \left[1 + \left(\frac{e^{-T} q_\theta(x)}{\hat{p}(x)} \right) \right]^{1/t} \] \[(8) \]
- Take $t=1$ for getting a differentiable approximation of the acceptance probability.

Theorem 2: For a fixed θ, the approximate Rejection sampling always improves the Rényi α divergence between the estimated and actual posterior for $\alpha \in (0, \infty)$. The following equation approximates the acceptance probability.
 \[a_\theta(x|T) = 1 + \left(\frac{q_\theta(x) e^{-T}}{\hat{p}(x)} \right) \] \[(9) \]
 \[D_\alpha(p||r) \leq D_\alpha(p||q) \] \[(10) \]

Proof: We are using the above notations.

\[
D_\alpha(P||R) = \frac{1}{(\alpha - 1)} \log \left[\int \left(\frac{\hat{p}(x)}{r(x)} \right)^\alpha r(x) dx \right] - \frac{\alpha}{(\alpha - 1)} \log Z_p
\] \[(11) \]
\[
= \frac{1}{(\alpha - 1)} \left(\alpha \log Z_R + \log \left[\int \left(\frac{\hat{p}(x)}{r(x)} \right)^\alpha r(x) dx \right] \right) - \frac{\alpha}{(\alpha - 1)} \log Z_p
\] \[(12) \]
\[
= \frac{\alpha}{(\alpha - 1)} \log Z_R + \frac{1}{\alpha - 1} \log \left[\int \left(\frac{\hat{p}(x)}{r(x)} \right)^\alpha r(x) dx \right] - \frac{\alpha}{(\alpha - 1)} \log Z_p \] \[(13) \]

Now we will take the derivative of $D_\alpha(P||R)$ with respect to T such that variable $T = - \log M$.

\[
\nabla_T D_\alpha(P||R) = \frac{\alpha}{(\alpha - 1)} \nabla_T \log Z_R + \frac{1}{\alpha - 1} \nabla_T \log \left[\int \left(\frac{\hat{p}(x)}{r(x)} \right)^\alpha r(x) dx \right]
\] \[(14) \]
\[
= \frac{\alpha}{(\alpha - 1)} \nabla_T \log Z_R + \frac{1}{\alpha - 1} \int \left(\frac{\hat{p}(x)}{r(x)} \right)^\alpha r(x) dx
\] \[(15) \]
We will take the derivative of numerator separately now for more clarity. Let’s denote the numerator by D_1. Note that the Z_R term would be canceled out.

\[
D_1 = \nabla_T \int \left(\frac{\hat{p}(x)}{\hat{r}(x)} \right)^\alpha r(x)dx
\]

(16)

\[
= -\alpha \int \left(\frac{\hat{p}(x)}{\hat{r}(x)} \right)^\alpha \nabla_T \log \hat{r}(x) r(x)dx + \int \left(\frac{\hat{p}(x)}{\hat{r}(x)} \right)^\alpha \nabla_T \log r(x) r(x)dx
\]

(17)

\[
= -\alpha \nabla_T \log Z_R \int \left(\frac{\hat{p}(x)}{\hat{r}(x)} \right)^\alpha r(x)dx + (1 - \alpha) \int \left(\frac{\hat{p}(x)}{\hat{r}(x)} \right)^\alpha \nabla_T \log r(x) r(x)dx
\]

(18)

By substituting the above result, we will finally get the following equation.

\[
\nabla_T D_\alpha(P||R) = - \int \left(\frac{\hat{p}(x)}{\hat{r}(x)} \right)^\alpha \nabla_T \log r(x) r(x)dx
\]

\[\int \left(\frac{\hat{p}(x)}{\hat{r}(x)} \right)^\alpha r(x)dx\]

(19)

Since we know that $E_R[\nabla_T \log r(x)] = 0$ we can directly change the numerator above into a covariance function. Also we know that covariance function is unaffected by adding a constant, hence we will add $\nabla \log Z_R$ to $\nabla_T \log r(x)$ in order to convert it into $\nabla_T \log \hat{r}(x)$. The final derivative would come out to be:

\[
\nabla_T D_\alpha(P||R) = - \text{COV}_R \left[\left(\frac{\hat{p}(x)}{\hat{r}(x)} \right)^\alpha , \nabla_T \log \hat{r}(x) \right]
\]

\[\int \left(\frac{\hat{p}(x)}{\hat{r}(x)} \right)^\alpha r(x)dx\]

(20)

\[
= \text{COV}_R \left[\left(\frac{\hat{p}(x)}{\hat{r}(x)} \right)^\alpha , - \left(e^{-T \frac{\hat{r}(x)}{\hat{p}(x)}} \right) \right]
\]

\[\int \left(\frac{\hat{p}(x)}{\hat{r}(x)} \right)^\alpha r(x)dx\]

(21)

\[\geq 0\]

(22)

Note that in above equation we are taking covariance of a random variable $\left(\frac{\hat{p}(x)}{\hat{r}(x)} \right)^\alpha$ with its monotonic transformation $\left(e^{-T \frac{\hat{r}(x)}{\hat{p}(x)}} \right)$, $\alpha > 0$ which is always positive. Hence, we can conclude that for any general T, $D_\alpha(P||R) \leq D_\alpha(P||Q)$.
