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Abstract
PAC-Bayes approaches have recently generated some of the tightest generalization
bounds for neural networks, as well as providing objective functions for regular-
ization when training networks de novo, and in the context of transfer learning.
However, existing approaches often place restrictions on the form of the prior
and/or posterior. We show how general and tractable PAC-Bayes bounds can be
derived in a deep probabilistic programming (DPP) framework. This allows both
prior and posterior to be arbitrary DPPs, hyper-priors to be easily introduced, and
variational techniques to be used during optimization. We test our framework using
generalization and transfer learning tasks on synthetic and biological data.

1 Introduction
Some of the tightest recent generalization bounds for neural networks have used PAC-Bayes ap-
proaches [1-3]. This success has depended in part on using data dependent priors; while the prior in
PAC-Bayes cannot explicitly depend on the observed dataset, it may depend on the generating data
distribution. To achieve this, approaches have used priors which depend on a subset of the training
data [4,5], are implicitly defined [5,6], or use privacy-preserving methods [1,2]. Other approaches
have introduced a hyper-prior and hyper-posterior in the context of transfer learning [7,8], where the
priors for individual tasks may be sampled from a data-dependent hyper-posterior. Such bounds may
also be used as regularizers for de novo training [5], and for transfer learning [7,8].

PAC-Bayes bounds are formulated in terms of prior and posterior stochastic classifiers, P and Q.
The expected risk of Q is bounded by the empirical Gibbs risk and a term involving KL(Q,P ).
Both P and Q may naturally be treated as deep probabilistic programs (DPPs, [9-11]); from this
perspective, they are simply stochastic functions. An advantage of this perspective is that it places
minimal restrictions on their functional forms; existing approaches such as above focus on restricted
forms of the prior [1-8] and/or posterior [4-6]. Further, hyper-priors and -posteriors may be treated as
higher-order stochastic programs which return stochastic classifiers, and recent variational methods
[10,11] used for efficient optimization. Here, we show how general and tractable hierarchical PAC-
Bayes bounds can be derived in a DPP framework, developed in a stochastic type system adapted
from [12]. We use recent variational techniques [13-15] to develop modified objectives from existing
bounds, which simultaneously serve as valid (looser) generalization bounds. We test our framework
using generalization and transfer learning tasks on synthetic and biological data.

2 PAC-Bayes Bounds as Deep Probabilistic Programs
Probabilistic type system. We assume we have types A,B,C..., Z along with function types (e.g.
A → B), and write a : A for a belongs to type A. The type I denotes the unit interval, and we
write A′ = (A→ I) for the type of distributions over A, where we assume for convenience all types
are discrete, and A′ contains only maps which sum to 1. For π : A′, we use the special notation
(samp π) to denote a sampling procedure (probabilistic program) which draws from π. The term
(samp π) may be reduced probabilistically by ρ-reduction [12] by sampling; a sample so drawn is
denoted π∗, and hence π∗ : A. We can compose sampling procedures; hence, if we have f : A2 → B
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and π1, π2 : A′, we may form the term t = f(samp π1, samp π2). We assign sampling procedures
to the type of distributions they implicitly represent; hence t : B′ (unlike [12], which leaves such
terms untyped). Further, we may assign multiple levels to the sampling statements within a term.
For this purpose, we use the notation t+, t++, ..., for (samp1 t), (samp2 t), .... Here, ρ-reduction
reduces only the first level samp statements in a term, and decrements by one the levels of all others;
hence if we annotate t above as t1 = f(π+

1 , π
++
2 ), this reduces by ρ-reduction to t∗1 = f(π∗1 , π

+
2 ),

and we have the type assignment t1 : B′′. As noted, a sampling procedure implicitly represents a
distribution. Hence, for a1 = (samp π) : A′ we have a1(a0) = P (a∗1 = a0) which we will also
write as Pa1(a0). With this notation, we can then define the KL-divergence between two probabilistic
programs. Letting p, q : X ′, we set KL(q, p) =

∑
x:X Pq(x) log(Pq(x)/Pp(x)). Note that this

treats explicit and implicitly defined distributions identically. The type system defined above is the
minimal system for our purposes; λ-terms and dependent types [12] may also be introduced for a
more powerful system.

Stochastic classifier models. We next state explicitly the stochastic classifier formulations we use
to define priors, posteriors, and hyper-priors and -posteriors in a PAC-Bayes setting. Here, assume
we have input and output types X and Y . Further, let Z represent fixed-precision positive and
negative reals. We use the fixed notation N(.;µ,Σ) to represent a multivariate normal (belonging
to type Zn → I), and NNT1,T2(.; θ) to represent a neural network with parameters θ (belonging to
function type T1 → T2 for some types T1, T2). We then define a hierarchy of types: F0 = (X → Y ),
F1 = F ′0 = (X → Y ) → I , F2 = F ′′0 , and so on. Here, F0 is the type of deterministic classifiers
(or regression models) between X and Y ; F1 represents distributions over F0, corresponding to
stochastic classifiers; and F2 represents distributions over F1, forming a type in which hyper-priors
and -posteriors are represented. We can specify flexible models at all these levels via the following
probabilistic programs, f0 : F0, f1 : F1, f2 : F2:

f0 = NNX,Y (.; θ0)

f1 = NNX,Y (.; NNZS ,Θ0
(z+

1 ; θ1) + e+
1 )

f2 = NNX,Y (.; NNZS ,Θ0
(z++

1 ; NNZS ,Θ1
(z+

2 , θ2) + e+
2 ) + e++

1 ) (1)

Here, Θ0,Θ1 are the parameter spaces (types) for θ0, θ1, z1, z2 = N(.;0S , IS) are standard normal
latent variables (where S is the dimensionality of the latent space), and e1 = N(.;0|Θ0|, σI|Θ0|) is a
noise term (similarly for e2, substituting Θ1 for Θ0). We note that f0, f1, f2 are entirely specified
by the parameter vectors θ0, θ1, θ2 respectively. Hence, the types F0, F1, F2 are isomorphic to
Θ0,Θ1,Θ2 (if terms are restricted to the forms in Eq. 1), and for two such programs fa1 , f

b
1 : F1,

KL(fa1 , f
b
1) can be estimated by approximating an integral across Θ0.

Hierarchical PAC-Bayes bounds. We state below two objective functions derived from PAC-Bayes
bounds, using the notation above, derived from [16] and [8] respectively:

φ1(fρ1 ) = R(fρ1 ) + (1/λ)[KL(fρ1 , f
π
1 ) + log(1/δ) + (λ2/M)] (2)

φ2(fρ2 , f
ρ,1
1 , fρ,21 ...fρ,N1 ) =< R(fρ,n1 ) > + < ((KL(fρ2 , f

π
2 ) + KL(fρ,n1 , (fπ2 )∗) + a)/b)1/2 >

+((KL(fρ2 , f
π
2 ) + c)/d)1/2 (3)

Here, fπ1 , f
π
2 denote priors and hyper-priors respectively, and fρ1 , f

ρ
2 posteriors and hyper-posteriors.

R is the empirical (Gibbs) risk, M , N and Mn are the number of training examples, tasks, and exam-
ples for task n respectively, < . > denotes the average as n ranges over tasks, a = log(2NMn/δ),
b = 2(Mn−1), c = log(2N/δ), d = 2(N−1), and λ, δ are hyper-parameters. A difficulty in optimiz-
ing these bounds directly is deriving estimators for the KL terms which are unbiased, or preserve the
upper-bound. In Appendix A, we outline three approaches, deriving a series of modified PAC-bounds
for tractable optimization. The first (Eq. 4, used in our experimentation) splits the KL terms into
entropy and cross-entropy components, KL(q, p) = −H(q)+H(q, p). Here, an upper-bound may be
used on the negative-entropy term, for instance−H(q) ≤ Eq(x,γ)[log q(γ)−log q(x|γ)+log r(γ|x)],
as introduced in [14], where (in our terms) q is a probabilistic program, γ ranges across the latent
space, and r is an auxiliary variational distribution. The cross-entropy H(q, p) may be approximated
by Monte-Carlo, or a variational (ELBO [17]) bound, both giving upper-bounds on the term. The
second approach (Eq. 5) uses a direct upper-bound on the KL-divergence [15]. The third (Eq. 6) splits
the KL term as above, but uses the CUBO bound [13] to bound the entropy term. Further, by using
the models in Eq. 1 in all three approaches, a scaled ELBO-bound may be substituted for the risk
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Figure 1: Testing generalization and transfer learning. (A) shows example synthetic data, while (B)
and (C) compare the test error and generalization bounds achieved by optimizing Eqs. 2 and 3 on
synthetic data. (D) shows results for transfer learning on genomics data, where prior and posterior
are trained to identify different psychiatric conditions vs controls (Eq. 2). Error bars show quartiles.

term using the reparameterization trick, which bounds the Gibbs risk. We give explicit forms for all
bounds in App. A; the first two are valid generalization bounds, while the third is only approximate if
the CUBO is estimated via Monte-Carlo [13]. We also discuss the use of amortization [10,11].

3 Results
Synthetic experiments. We test the ability of single and multi-level DPP-based bounds to predict
generalization on synthetic data. For this purpose, we design a synthetic set, having 33 tasks, each
being a binary classification problem with 2d input features, where the inputs fall into 8 clusters
arranged as shown in Fig. 1A, with 4 being randomly assigned to classes 0 and 1 on each task.
This allows for transfer of information across tasks, since similar decision boundaries may occur in
multiple tasks. For each task, we generate 6 datasets with varying levels of noise added (to permit
different levels of generalization), flipping 0, 20, 40, 60, 80 and 100% of the labels, and split the
data into training, validation and testing partitions of N = 15 data-points each. We first learn a
stochastic classifier fρ1 using Eq. 4 on the validation partition, after pre-training a prior fπ1 on the
training partition using the ELBO bound [17]. Fig. 1B plots the test error against the bound, which
are significantly correlated (r = 0.2, p = 0.008). Further, a regression of the test error on the training
error and bound show the bound to be moderately informative (p = 0.1, 1-tailed ANOVA). We then
use a multi-level bound modified from Eq. 3 (see App. A) to learn classifiers fρ1 for each task, while
simultaneously fitting a hyper-posterior fρ2 to groups of 3 tasks at a time (using the validation sets
only). Fig. 1C shows this approach is able to achieve a better correlation between the bound and test
error (r = 0.7, p = 2e− 30), and that the bound carries significant additional information about the
test error versus the training error alone (p = 0.01, 1-tailed ANOVA), showing that the hierarchical
approach is able to share information between tasks. We compare against the model of [8], in which
the priors, and hyper-posterior/prior are restricted to be Gaussian in form, which achieves significantly
lower test performance across tasks (p = 0.015, 1-tailed t-test, 0.53 vs 0.56 mean accuracy), showing
the flexibility afforded by the DPP formulation to be beneficial. In all cases, we use networks with 2
hidden layers of 5 units each, a 2-d latent space, set σ = 0.1, λ = 10, δ = 0.05, and use Eq. 4 and its
2-level analogue for optimization.

Psychiatric genomics data. We further test our approach on psychiatric genomics data from the
PsychENCODE project [18], consisting of gene expression (RNA-Seq) levels from post-mortem
prefrontal cortex samples of control, schizophrenia (SCZ), bipolar (BDP) and autistic (ASD) subjects.
We create datasets balanced for cases and controls (and covariates, see [18]) for each disorder, with
710, 188 and 62 subjects respectively, from which we create 10 training, validation and testing
partitions (approx. 0.45/0.45/0.1 split). We then replicate the setting of the first synthetic experiment
above, training priors fπ1 on each of the training partitions (via an ELBO objective), before training a
posterior stochastic classifier fρ1 using Eq. 4 on the validation data; further, we test all combinations
of disorders when learning priors and posteriors. The results in Fig. 1D show that both SCZ and ASD
models are able to use the information in the prior to improve generalization. The SCZ results are
particularly interesting, in that the priors trained on all 3 disorders are able to improve the baseline
model; the improvements for the SCZ and BPD priors here are significant (p = 0.006 and p = 0.026
respectively, 1-tailed t-test). In the ASD case, only the ASD prior improves performance, while
for BPD, no improvement is gained. We note that the SCZ dataset is substantially larger than the
other disorders’, which may effect the results. In general, the SCZ results point to a shared etiology
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of psychiatric conditions, as has been highlighted recently [19,20]. Further, we compare against a
model in which the prior is restricted to be Gaussian in form as in [5], observing significantly lower
performance across models (p = 9.9e− 3, 1-tailed t-test, 0.57 vs 0.59 mean accuracy). For each data
split, we select the 5 most discriminative genes for each disorder using the training partitions to create
a 15-d input space; the network hyper-parameters and bounds are identical to the synthetic case.

4 Discussion
We have shown how hierarchical PAC-Bayes bounds can be naturally converted into training objec-
tives in a probabilistic programming framework, and have proposed modified forms of these bounds
which can be readily optimized using existing variational methods, while continuing to serve as valid
generalization bounds. Through experiments on synthetic and biological data, we have shown the
potential of these objectives to predict generalization and perform transfer learning. A natural future
direction is the extension of the hierarchical objective in Eq. 3 to higher-order priors and posteriors
(which are readily formulated by extending Eq. 1). It may be possible to extend the framework of
[8] to generate valid high-order generalization bounds for this purpose; however, we note that new
techniques may be required to tighten these bounds to be non-vacuous (although loose bounds may
be function as useful learning objectives and carry information about generalization, as our results
show).
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Appendix A: Modified PAC-Bayes Bounds

We state here the explicit forms of the modified bounds which may be used as objectives in training
the models from Eq. 1. For convenience, we give these modified versions in the context of the
single-level bound (Eq. 2). For the first modified bound (which we use in our experimentation), we
substitute an ELBO bound for the empirical risk, and use an upper-bound on the negative entropy
(−H(q(x)) ≤ Eq(x,γ)[log q(γ)−log q(x|γ)+log r(γ|x)], as introduced in the context of hierarchical
variational models in [14]):

φ1
a(fρ1 , r1, r2) = −Er1(γ|x,y)[C log(fρ1 (y|x, γ)] + C · KL(r1(γ|x, y), z1) +

(1/λ)[Ez1(γ)fρ1 (θ0|γ)[log z1(γ)− log fρ1 (θ0|γ) + log r2(γ|θ0)]−
Efρ1 [log(fπ1 (θ0))] + log(1/δ) + (λ2/M)] (4)

where C = 1/ log 2 (scaling the ELBO to bound the Gibbs risk), and r1, r2 are variational distribu-
tions. Here, r1 has the type (X,Y )→ (ZS)′; hence it maps pairs of inputs/outputs to distributions
over the latent space, and γ : ZS . By contrast, r2 has type Θ0 → (ZS)′. Further, we note the
slight abuse of notation: fρ1 (y|x, γ) = P ((samp fρ1 )(x) = y). Finally, as discussed, since Eq. 4
upper-bounds Eq. 2, it remains an upper-bound on the expected risk (i.e. expected test error).

An alternative to Eq. 4 is to directly upper-bound the KL divergence term as in [15]. We give this
modified bound below, stated in terms of the empirical risk for simplicity:

φ1
b(f

ρ
1 , r1, r2) = R(fρ1 ) + (1/λ)[Efρ1 (θ0|γ0)z1(γ0)Er1(γa1:K |θ0)Er2(γb1:L|θ0) logFθ0,γ0,γa1:K ,γb1:L +

+ log(1/δ) + (λ2/M)] (5)

where Fθ0,γ0,γa1:K ,γb1:L = (A/B), for A = (1/(1 +K)
∑
k=0:K(fρ1 (θ0|γak)z1(γk))/(r1(γak |θ0)) and

B = (1/(1 + L)
∑
l=1:L(fπ1 (θ0|γbl )z1(γl))/(r2(γbl |θ0)). Here, r1, r2 both have type Θ0 → (ZS)′,

and the bound has a multisample form, with the γ’s all being samples in the latent space ZS . Again,
Eq. 5 upper-bounds Eq. 2, and so upper-bounds the expected risk.

A further alternative is to use the CUBO bound [13] to upper-bound the negative entropy term:

φ1
c(f

ρ
1 , r) = R(fρ1 ) + (1/λ)[(1/n) logEr(γ|θ0)fρ1 (θ0)[((z1(γ)fρ1 (θ0|γ))/r(γ|θ0))n]−

Efρ1 [log(fπ1 (θ0))] + log(1/δ) + (λ2/M)] (6)

where n is a parameter of the bound. We note however that if a Monte-Carlo estimator is used for the
expectation in the second term, this gives a biased estimate of the CUBO bound [13], and hence only
an approximate upper-bound on the expected risk.

In Eqs. 4 and 6, the cross-entropy terms Efρ1 [log(fπ1 (θ0))] may be evaluated through Monte-Carlo
approximation, that is, sampling from z1, and evaluating fπ1 (θ0|z1) via the reparameterization trick,
for samples θ0 drawn from fρ1 . Otherwise, we can introduce a further ELBO bound on log(fπ1 (θ0)),
and evaluate this for samples from fρ1 . Both of these approaches preserve the upper-bound on the
expected risk; we use the former in our experimentation. We note that all three approaches above can
also be applied in the context of the 2-level PAC-Bayes bound (Eq. 3); again, we decompose the KL
terms and use the approach of [14] to upper-bound the resulting entropy terms in our experimentation,
as in Eq. 4. Finally, we note that although Eq. 4 introduces two variational distributions, these may
be tied by setting r2 = r1(samp r2a(x, y)), for r2a : (X,Y )→ Θ′0, so that they share a consistent
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model of the mapping from parameters θ0 to the latent space ZS . The expansion of the 2-level bound
introduces further variational distributions which may also be tied in this way, offering the possibility
for efficient amortized inference (i.e. allowing inference models to jointly constrain each other). We
leave experimental investigation of such tied variational bounds for future work.
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