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Abstract

Model uncertainty obtained by variational Bayesian inference with Monte Carlo
dropout is prone to miscalibration. The uncertainty does not represent the model
error well. In this paper, temperature scaling is extended to dropout variational
inference to calibrate model uncertainty. Expected uncertainty calibration error
(UCE) is presented as a metric to measure miscalibration of uncertainty. The
effectiveness of this approach is evaluated on CIFAR-10/100 for recent CNN archi-
tectures. Experimental results show, that temperature scaling considerably reduces
miscalibration by means of UCE and enables robust rejection of uncertain predic-
tions. The proposed approach can easily be derived from frequentist temperature
scaling and yields well-calibrated model uncertainty. It is simple to implement and
does not affect the model accuracy.

1 Introduction

For safety-critical vision tasks such as autonomous driving or computer-aided diagnosis, it is essential
to consider the prediction uncertainty of deep learning models. Bayesian neural networks and recent
advances in their approximation provide the mathematical tools for quantification of uncertainty
[1, 2]. One practical approximation is variational inference with Monte Carlo (MC) dropout [3]. It is
applied to obtain epistemic uncertainty, which is caused by uncertainty in the model weights due to
training with data sets of limited size [1, 4]. However, it tends to be miscalibrated, i. e. the uncertainty
does not correspond well to the model error [5, 6].

First, we consider the problem of miscalibration of the frequentist approach: The weights of a deep
model are obtained by maximum likelihood estimation [1], and the normalized output likelihood for
an unseen test input does not consider uncertainty in the weights [4]. The likelihood is generally
unjustifiably high [5], and can be misinterpreted as high prediction confidence. This miscalibration
can also be observed for model uncertainty provided by MC dropout variational inference. However,
calibrated uncertainty is essential as miscalibration can lead to decisions with fatal consequences in
the aforementioned task domains.

Overconfident predictions of neural networks have been addressed by entropy regularization tech-
niques. Szegedy et al. present label smoothing as regularization of models during supervised training
for classification [7]. They state that a model trained with one-hot encoded labels is prone to becoming
overconfident about its predictions, which causes overfitting and poor generalization. Pereyra et
al. link label smoothing to confidence penalty (CP) and propose a simple way to prevent overconfi-
dent networks [8]. Low entropy output distributions are penalized by adding the negative entropy
to the training objective. However, the referred works do not apply entropy regularization to the
calibration of confidence or uncertainty. In the last decades, several non-parametric and parametric
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calibration approaches such as isotonic regression [9] or Platt scaling [10] have been presented.
Recently, temperature scaling (TS) has been demonstrated to lead to well-calibrated model likelihood
in non-Bayesian deep neural networks [5]. It uses a single scalar to smooth the softmax output and
regularize the entropy. Scaling has also been introduced to approximate categorical distributions by
the Gumbel-Softmax or Concrete distribution [11, 12].

Our work extends temperature scaling to variational Bayesian inference with dropout to obtain
well-calibrated model uncertainty. The main contributions of this paper are 1. definition for perfect
calibration of uncertainty and definition for the expected uncertainty calibration error, 2. the derivation
of temperature scaling for dropout variational inference, and 3. experimental results of different
network architectures on CIFAR-10/100 [13], that demonstrate the improvement of calibration by the
proposed method and superiority over confidence penalty. By using temperature scaling together with
Bayesian inference, we expect better calibrated uncertainty. To the best of our knowledge, temperature
scaling has not yet been used to calibrate model uncertainty in variational Bayesian inference. Our
code is available at: https://github.com/mlaves/bayesian-temperature-scaling.

2 Methods

The presented approach for obtaining well-calibrated uncertainty is applied to a general multi-class
classification task. Let input x ∈ X be a random variable with corresponding label y ∈ Y =
{1, . . . , C}. Let fw(x) be the output (logits) of a neural network with weight matrices w, and
with model likelihood p(y = c | fw(x)) for class c, which is sampled from a probability vector
p = σSM(fw(x)), obtained by passing the model output through the softmax function σSM(·). From
a frequentist perspective, the softmax likelihood is often interpreted as confidence of prediction.
Throughout this paper, we follow this definition. However, due to optimizing the weights w via
minimization of the negative log-likelihood of p(y | fw(x)), modern deep models are prone to overly
confident predictions and are therefore miscalibrated [5, 6].

Let ŷ = argmaxp be the most likely class prediction of input x with likelihood p̂ = maxp and true
label y. Then, following Guo et al. [5], perfect calibration is defined as

P (ŷ = y | p̂ = q) = q, ∀q ∈ [0, 1] . (1)

To determine model uncertainty, dropout variational inference is performed by training the model
fw with dropout [14] and using dropout at test time to sample from the approximate posterior by
performing N stochastic forward passes [3, 4]. This is also referred to as MC dropout. In MC
dropout, the final probability vector is obtained by MC integration:

p(x) =
1

N

N∑
i=1

σSM (fwi(x)) . (2)

Entropy of the softmax likelihood is used to describe uncertainty of prediction [4]. In contrast to
confidence as a measure of goodness of prediction, uncertainty takes into account the likelihoods of
all C classes. We introduce normalization to scale the values to a range between 0 and 1:

H̃(p) := − 1

logC

C∑
c=1

p(c) log p(c) , H̃ ∈ [0, 1] . (3)

From Eq. (1) and Eq. (3), we define perfect calibration of uncertainty as

P(ŷ 6= y | H̃(p) = q) = q, ∀q ∈ [0, 1] . (4)

That is, in a batch of inputs all predicted with uncertainty of e.g. 0.2, a top-1 error of 20% is expected.

2.1 Expected Uncertainty Calibration Error (UCE)

A popular way to quantify miscalibration of neural networks with a scalar value is the expectation of
the difference between predicted softmax likelihood p̂ and accuracy

Ep̂ [ |P (ŷ = y | p̂ = q)− q| ] , ∀q ∈ [0, 1] , (5)
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Figure 1: Reliability diagrams (M = 15 bins) for ResNet-101 on CIFAR-100. Top row: Uncalibrated
frequentist confidence (left), and confidence and uncertainty obtained by dropout variational inference
(right). Bottom row: Results from calibration with TS. Dashed lines denote perfect calibration.

which can be approximated by the Expected Calibration Error (ECE) [15, 5]. The output of a neural
network is partitioned into M bins with equal width and a weighted average of the difference between
accuracy and confidence (softmax likelihood) is taken:

ECE =

M∑
m=1

|Bm|
n

∣∣acc(Bm)− conf(Bm)
∣∣ , (6)

with total number of inputs n and set of indices Bm of inputs whose confidence falls into that bin
(see [5] for more details). We propose the following slightly modified notion of Eq. (5) to quantify
miscalibration of uncertainty:

EH̃[ |P(ŷ 6= y | H̃(p) = q)− q| ], ∀q ∈ [0, 1] . (7)

We refer to this as Expected Uncertainty Calibration Error (UCE) and approximate analogously with

UCE :=

M∑
m=1

|Bm|
n

∣∣err(Bm)− uncert(Bm)
∣∣ . (8)

See § A.1 for definitions of err(Bm) and uncert(Bm).

2.2 Temperature Scaling for Dropout Variational Inference

State-of-the-art deep neural networks are generally miscalibrated with regard to softmax likelihood [5].
However, when obtaining model uncertainty with dropout variational inference, this also tends to be
not well-calibrated [6]. Fig. 1 (top row) shows reliability diagrams [16] for uncalibrated ResNet-101
[17] trained on CIFAR-100 [13]. The divergence from the identity function reveals miscalibration.

In this work, dropout is inserted before the last layer with fixed dropout probability of 0.5 as in [3].
Temperature scaling with T > 0 is inserted before final softmax activation and before MC integration:

p̂(x) =
1

N

N∑
i=1

σSM

(
T−1fwi

(x)
)
. (9)

T is optimized with respect to negative log-likelihood while performing MC dropout on the validation
set. This is equivalent to maximizing the entropy of p̂ [5]. See § A.2 for more details on T .
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Table 1: ECE and UCE test set results in % (M = 15 bins). 0 % means perfect calibration. In TS
calibration with MC dropout the same value of T was used to report both ECE and UCE.

Uncalibrated TS Calibrated

Freq. MC Dropout Freq. MC Dropout

Data Set Model ECE ECE UCE ECE ECE UCE

CIFAR-10 ResNet-18 8.95 8.41 7.60 1.40 0.47 5.27
CIFAR-100 ResNet-101 29.63 24.62 30.33 3.50 1.92 2.41
CIFAR-100 DenseNet-169 30.62 23.98 29.62 6.10 2.89 2.69
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Figure 2: Reliability diagrams (M = 15 bins) for DenseNet-121 on CIFAR-10. Top row: Training
with confidence penalty. Bottom row: TS calibrated (trained without confidence penalty).

3 Experiments & Results

The experimental results of the proposed method are presented threefold: First, TS is used to calibrate
confidence and uncertainty obtained by MC dropout; second, TS calibration is compared with
calibration by entropy regularization using confidence penalty; and finally, uncertain predictions are
rejected based on well-calibrated uncertainty. Details on the training procedure can be found in § A.3.

3.1 Uncertainty Calibration

Tab. 1 reports test set results for different networks [17, 18] and data sets used to evaluate the
performance of temperature scaling for dropout variational inference. The proposed UCE metric
is used to quantify calibration of uncertainty. Fig. 1 shows reliability diagrams [16] for different
calibration scenarios of ResNet-101 [17] on CIFAR-100. For MC dropout N = 25 forward passes
are performed. Uncalibrated ECE shows, that MC dropout already reduces miscalibration of model
likelihood by up to 6.6 percentage points. With TS calibration, MC dropout reduces ECE by 45–66 %
and UCE drops drastically (especially for larger networks). This illustrates the magnitude of how
much TS calibration benefits from Bayesian inference using MC dropout. Additional reliability
diagrams showing similar results can be found in § A.4.

3.2 Temperature Scaling vs. Confidence Penalty

Low entropy output distributions are penalized by adding the negative entropy H of the softmax
output to the negative log-likelihood training objective, weighted by an additional hyperparameter β.
This leads to the following optimization function:

LCP(w) = −
∑
X ,Y

logpw(y|x)− βH (pw(y|x)) . (10)
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Figure 3: The effect of the uncertainty threshold Hmax on the test set error for the rejection of
uncertain predictions (orange: uncalibrated, blue: TS calibrated). AsHmax decreases, more uncertain
predictions are rejected, which results in a lower error.

We reproduce the experiment of Pereyra et al. on supervised image classification [8] and compare
the goodness of calibration of confidence and uncertainty to our presented approach. DenseNet-121
with dropout is trained on CIFAR-10 as described in § A.3. We fix β = 0.1 for CP loss and omit data
augmentation for this experiment as presented in [8].

Fig. 2 compares training with confidence penalty to our approach. CP reduces miscalibration (ECE =
5.20% without CP vs. ECE = 3.37% with CP for DenseNet-121). However, it is not as effective as
TS and still produces largely miscalibrated uncertainty. A combination of CP during training and
subsequent TS is conceivable and could possibly lead to an even better calibration. We have not
followed this approach yet.

3.3 Example: Rejection of Uncertain Predictions

An example application of well-calibrated prediction uncertainty is the rejection of uncertain pre-
dictions. We define an uncertainty thresholdHmax and reject all predictions from the test set where
H̃(p) > Hmax. A decrease in false predictions of the remaining test set is expected. Fig. 3 shows
the top-1 error as a function of decreasingHmax. For both uncalibrated and calibrated uncertainty,
decreasing Hmax reduces the top-1 error. Using calibrated uncertainty, the relationship is almost
linear (forHmax < 0.8), allowing robust rejection of uncertain predictions.

4 Conclusion

Temperature scaling calibrates uncertainty obtained by dropout variational inference with high
effectiveness. The experimental results confirm the hypothesis that the presented approach yields
better calibrated uncertainty. In addition, substantially better calibrated softmax probability was
achieved. MC dropout TS is simple to implement, more effective than confidence penalty during
training and the scaling does not change the maximum of the output of a network, thus model
accuracy is not compromised. Therefore, it is an obvious choice in Bayesian deep learning with
dropout variational inference because well-calibrated uncertainties are of utmost importance for
safety-critical decision-making. However, there are many factors (e. g. network architecture, weight
decay, dropout configuration) influencing the uncertainty in Bayesian deep learning that have not
been discussed in this paper and are open to future work.
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A Appendix

A.1 Expected Uncertainty Calibration Error

We restate the definition of Expected Uncertainty Calibration Error (UCE) from Eq. (8):

UCE =

M∑
m=1

|Bm|
n

∣∣err(Bm)− uncert(Bm)
∣∣ .

The error per bin is defined as

err(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi 6= y) , (11)

where 1(ŷi 6= y) = 1 and 1(ŷi = y) = 0. Uncertainty per bin is defined as

uncert(Bm) =
1

|Bm|
∑
i∈Bm

H̃(pi) . (12)

A.2 Temperature Scaling with Monte Carlo Dropout

Temperature scaling with MC dropout variational inference is derived by closely following the
derivation of frequentist temperature scaling in the appendix of [5]. Let {z1,j , . . . , zN,j} be a
set of logit vectors obtained by MC dropout with N stochastic forward passes for each input
xj ∈ {x1, . . . ,xM} with true labels {y1, . . . , yM}. Temperature scaling is the solution p̂ to entropy
maximization

max
p̂
− 1

N

N∑
i=1

M∑
j=1

C∑
c=1

p̂ (zi,j)
(c)

log p̂ (zi,j)
(c)
, (13)

subject to
p̂(zi,j)

(c) ≥ 0 ∀i, j, c , (14)

C∑
c=1

p̂(zj)
(c) = 1 ∀j , (15)

1

N

N∑
i=1

M∑
j=1

z
(yj)
i,j =

1

N

N∑
i=1

M∑
j=1

C∑
c=1

z
(c)
i,j p̂(zi,j)

(c). (16)

Guo et al. solve this constrained optimization problem with the method of Lagrange multipliers. We
skip reviewing their proof as one can see that the solution to p̂ in the case of MC dropout integration
provides

1

N

N∑
i=1

p̂i (zj)
(c)

=
1

N

N∑
i=1

eλz
(c)
i,j∑C

`=1 e
λz

(`)
i,j

(17)

=
1

N

N∑
i=1

σSM (λfwi
(xj))

(c)
, (18)

which recovers temperature scaling for λ = T−1 [5]. T is optimized with respect to negative
log-likelihood on the validation set using MC dropout.

A.3 Training Settings

The model implementations from PyTorch 1.2 [19] are used and trained with following settings:

• batch size of 256

• AdamW optimizer [20] with initial learn rate of 0.01 and β1 = 0.9, β2 = 0.999
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• weight decay of 0.01
• negative-log likelihood (cross entropy) loss
• reduce-on-plateau learn rate scheduler (patience of 10 epochs) with factor of 0.1
• additional validation set is randomly extracted from the training set (5000 samples)
• dropout with probability of 0.5 before the last linear layer was used in all models during

training
• in MC dropout, N = 25 forward passes with dropout probability of 0.5 were performed

Code is available at: https://github.com/mlaves/bayesian-temperature-scaling.

A.4 Additional Reliability Diagrams

In this section, reliability diagrams for the other data set/model combinations from Tab. 1 are visual-
ized to provide additional insight into the calibration performance. The proposed method is able to
calibrate all models with respect to both UCE and ECE across all bins.
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Figure 4: Reliability diagrams (M = 15 bins) for ResNet-18 on CIFAR-10.
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Figure 5: Reliability diagrams (M = 15 bins) for DenseNet-169 on CIFAR-100.
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