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Abstract

Despite their compelling theoretical properties, Bayesian neural networks (BNNs)
tend to perform worse than frequentist methods in classification-based uncertainty
quantification (UQ) tasks such as out-of-distribution (OOD) detection. In this pa-
per, based on empirical findings in prior works, we hypothesize that this issue is
because even recent Bayesian methods have never considered OOD data in their
training processes, even though this “OOD training” technique is an integral part
of state-of-the-art frequentist UQ methods. To validate this, we treat OOD data
as a first-class citizen in BNN training by exploring several ways of incorporat-
ing OOD data in Bayesian inference. We show in experiments that OOD-trained
BNNs are competitive to, if not better than recent frequentist baselines. This work
thus provides strong baselines for future work in Bayesian deep learning.

1 Introduction
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Figure 1: Avg. confidence on uniform
OOD test data (lower is better). All
methods have similar accuracy and con-
fidence on the in-distribution test sets.

Uncertainty quantification (UQ) allows learning systems
to “know when they do not know”. Both the Bayesian and
frequentist deep learning communities address similar
UQ functionality (in particular out-of-distribution (OOD)
detection), but it appears that even recent Bayesian neural
networks [BNNs, 1–3, etc.] tend to underperform com-
pared to the state-of-the-art frequentist UQ methods [4–8,
etc.]. Figure 1 shows this observation in a standard bench-
marks for OOD detection: Outlier Exposure [4], a popu-
lar frequentist method, performs much better than BNNs
and even Deep Ensemble [9], which has been considered
as a strong baseline in Bayesian deep learning [10].

This paper is thus dedicated to answer the question of
“how can we bring the performance of BNNs on par with
that of recent frequentist UQ methods?” Our working hypothesis is that the disparity between them
is not due to some fundamental advantage of the frequentist viewpoint, but to the more mundane
practical fact that recent frequentist UQ methods leverage OOD data in their training process, via
the so-called “OOD training” technique. The benefits of this technique are well-studied, both for
improving generalization [11] and more recently, for OOD detection [5–8]. But while OOD data
have been used for tuning the hyperparameters of BNNs [12], it appears that even recently proposed
deep Bayesian methods have not considered OOD training. A reason for this may be because of that
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it is unclear how can one can incorporate OOD data in the Bayesian inference itself. Thus, in this
work, we explore some options of incorporating OOD data to BNN training.

2 OOD Training

We focus on classification tasks. Let F : Rn×Rd → Rc defined by (x, θ) 7→ F (x; θ) be an `-layer,
c-class NN with any activation function. Here, Rn, Rd, and Rc are the input, parameter, and output
spaces of the network, respectively. Let P (X) and P (Y |X) be unknown probability distributions
on Rn and {1, . . . , c}, respectively. We assume that an i.i.d. dataset D := {(x(i), y(i))}mi=1 sampled
from the previous distributions. Let σ : Rc → ∆c be the softmax function. A common choice of
likelihood function for c-class classification networks is the softmax-Categorical likelihood: Given
(x, y) ∈ D and θ, the softmax output σ(F (x; θ)) can be interpreted as a probability vector and the
Categorical log-likelihood over it can be defined by log pCat(y|x, θ) := log σyk(F (x; θ)).

Let U be the data region, i.e. a subset of the input space Rn where thedistribution P (X) assigns
non-negligible mass. Suppose V := Rn \ U is the remaining subset of the input space Rn that has
low mass under P (X), i.e. it is the OOD region. It has recently been shown that any point estimate
of F can induce an arbitrarily overconfident prediction on V [6, 13]. Moreover, empirical evidence
shows that BNNs often yield suboptimal results in this regime, as Fig. 1 shows.

In an adjacent field, the frequentist community has proposed a technique, referred to here as OOD
training, to address this issue. The core idea is to “expose” the network to a particular kind OOD
data and let it generalize to unseen outliers. Suppose Dout := {x̂i ∈ V }mout

i=1 is a collection of mout
points sampled from some distribution on V . Then, one can incorporate these OOD samples into
the standard MAP objective via an additional objective function L:

arg max
θ

log pCat(D|θ) + log p(θ) + L(θ;Dout). (1)

For instance, Hendrycks et al. [4] define L to be the negative cross-entropy between the softmax
output of F under Dout and the uniform discrete distribution. Empirically, this frequentist robust
training scheme obtains state-of-the-art performance in OOD detection benchmarks [4, 7, 8, etc.].

3 OOD Training for BNNs

Here we explore two methods for incorporating OOD data in BNN training. Two additional methods
are presented in the appendix.

Method 1: Extra “None Class” (NC)

The most straightforward yet philosophically clean way to incorporate unlabeled OOD data is by
adding an extra class, corresponding to the “none class”—also known as the “dustbin” or “garbage”
class [11]. Under this assumption, we only need to label all OOD data inDout with the class c+1 and
add them to the true dataset D. That is, the new dataset is D̃ := Dq{(x(1)out , c+ 1), . . . , (x

(mout)
out , c+

1)}, where q denotes disjoint union. Under this setting, we can directly use the Categorical likeli-
hood and thus, a BNN with this assumption has a sound Bayesian interpretation.

Method 2: Frequentist-Loss Likelihood (OE)

Considering the effectiveness of OE, it is, therefore, tempting to give a direct Bayesian treatment
upon it. But to do so, we first have to find a sound probabilistic justification of L in (1) since not all
loss functions can be interpreted as (negative log-)likelihood functions. First, recall that OE’s OOD
objective—the last term in (1)—is given by

LOE(θ;Dout) := − E
xout∼Dout

(H(σ(F (xout; θ)), u)) =
1

cmout

mout∑
i=1

c∑
k=1

log σc(F (x
(i)
out; θ)), (2)

where u := (1/c, . . . , 1/c) is the uniform probability vector of length c and H is the cross-entropy
functional. Our goal here is to interpret (2) as a log-likelihood function: we aim at finding a log-
likelihood function log p(Dout|θ) over Dout that has the form of LOE.
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Table 1: OOD data detection in terms of FPR95. Values are averages over six OOD test sets and
five prediction runs—lower is better. Best values of each categories are in bold.

Methods MNIST F-MNIST SVHN CIFAR-10 CIFAR-100

MAP 17.7 69.4 22.4 52.4 81.0
DE 10.6 61.4 10.1 32.3 73.3
OE 5.4 16.2 2.1 22.8 54.0

LL-VB 25.7 63.3 22.0 36.5 77.6
+NC 7.5 15.0 1.4 28.0 49.9
+OE 6.8 22.4 1.5 29.8 53.3

LA 19.4 68.7 17.1 53.6 81.3
+NC 6.6 8.3 1.5 20.1 47.4
+OE 5.4 17.0 1.1 23.3 53.9

We begin with the assumption that the Categorical likelihood is used to model both the in- and
out-of-distribution data—in particular we use the standard integer labels for both D and Dout. Now,
recall that the OOD data ideally have the uniform confidence, that is, they are equally likely under
all possible labels. But since we have assumed “hard” labels, we cannot use u directly as the label
for xout ∈ Dout. To circumvent this, we redefine the OOD dataset Dout by assigning all c possible
labels to each xout, so that F is maximally confused about the correct label of xout.

Dout := {(x(1)out , 1), . . . , (x
(1)
out ,K), . . . , (x

(mout)
out , 1), . . . , (x

(mout)
out ,K)}. (3)

Thus, given mout unlabeled OOD data, we have |Dout| = cmout OOD data points in our OOD
training set. So, the negative log-Categorical likelihood over Dout is given by − log p(Dout|θ) =∑mout
i=1

∑c
k=1 log σk(F (x

(i)
out; θ)). Comparing this to (2), we identify that log p(Dout|θ) is exactly

LOE, up to a constant factor 1/(cmout), which can be thought as a tempering factor to p(Dout|θ).
We have thus obtained the probabilistic interpretation of OE’s objective—this likelihood can then
be soundly used in a Bayesian inference—albeit arising from applying a heuristic (3) to the data.

4 Experiments

We validate the approach via standard OOD detection benchmarks on MNIST, F-MNIST, SVHN,
CIFAR-10, and CIFAR-100. For each of them, we use six OOD test sets and measure the perfor-
mance via the FPR95 metric, which measure the false-positive rate at 95% true positive rate. We
use the LeNet and WideResNet-16-4 architectures, trained in the usual manner. The OOD training
set Dout is the 32×32 downsampled ImageNet dataset [14] as an alternative to the 80M Tiny Images
dataset used by [4, 7], since the latter is not available anymore. As the base BNNs our methods are
applied on, we use a simple last-layer mean-field variational Bayes (LL-VB) and all-layer diagonal
Laplace approximation (LA). We use these simple BNNs to show that OOD training is effective
even in this regime. Results with more sophisticated BNNs are in the appendix.

We present the OOD detection results in Table 3. As indicated in Fig. 1, OE is significantly better
than even DE while retaining the computational efficiency of MAP. The vanilla Bayesian baselines
(LL-VB, LA) achieve worse results than DE (and thus OE). But, when OOD training is employed
to train these BNNs using the two methods we considered in the previous section, their performance
improves. We observe that all Bayesian OOD training methods generally yield better results than
DE and become competitive to OE. For more results, please refer to the appendix.

5 Conclusion

We raised an important observation regarding contemporary BNNs’ performance in uncertainty
quantification, in particular in OOD detection tasks. We noticed that BNNs tend to underperform
compared to non-Bayesian UQ methods. We hypothesized that this issue is due to the fact that recent
frequentist UQ methods utilize an auxiliary OOD training set. To validate this, we explored ways
to incorporate OOD training data into BNNs while still maintaining a reasonable Bayesian interpre-
tation. Our experimental results showed that using OOD data in approximate Bayesian inference
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significantly improved the performance of BNNs, making them competitive or even better than non-
Bayesian counterparts. In particular, we found that the most philosophically Bayesian-compatible
way of OOD training—simply add an additional “none class”—performs best. We hope that the
studied methods can be strong baselines for future work in the Bayesian deep learning community.
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Appendix A Additional OOD-Training Methods for BNNs

Method 3: Soft Labels (SL)

In this method, we simply assume that the data have “soft labels”, i.e. the labels are treated as
general probability vectors, instead of restricted to integer labels [15].1 Thus, we can assume that
the target Y is a ∆c-valued random variable, where ∆c is the (c − 1)-probability simplex. Under
this assumption, since one-hot vectors are also elements of ∆c (they represent the c corners of ∆c),
we do not have to redefine D other than to one-hot encode the original integer labels.

Now let us turn our attention to the OOD training data. The fact that these data should be predicted
with maximum entropy suggests that the suitable label for any xout ∈ Dout is the uniform probability
vector u := (1/c, . . . , 1/c) of length c—the center of ∆c. Therefore, we can redefine Dout as the set
{(x(i)out, u)}mi=1, and then define a new joint dataset D̃ := D q Dout containing both the soft-labeled
in- and out-distribution training data. Note that without the assumption that Y is a simplex-valued
r.v., we cannot assign the label u to the OOD training data, and thus we cannot naturally convey our
intuition that we should be maximally uncertain over OOD data.

Under this assumption, we have to adapt the likelihood. A straightforward choice for simplex-
valued r.v.s. is the Dirichlet likelihood pDir(y|x, θ) := Dir(y|α(F (x; θ))) where we have make the
dependence of α to the network output F (x; θ) explicit. So, we obtain the log-likelihood function

log pDir(y|x, θ) = log Γ (α0)− log Γ(αk(F (x; θ))) +

c∑
k=1

(αk(F (x; θ))− 1) log yk, (1)

where α0 :=
∑c
k=1 αk(F (x; θ)). Therefore, the log-likelihood for D̃ is given by log pDir(D̃|x, θ) =∑m

i=1 log pDir(y
(i)|x(i), θ) +

∑mout
i=1 log pDir(u|x(i)out, θ), which can readily be used in a Bayesian in-

ference.

One thing left to discuss is the definition of α(F (x; θ)). An option is to decompose it into mean
and precision [18]. We do so by writing αk(F (x; θ) = γ σk(F (x; θ)) for each k = 1, . . . , c, where
γ is the precision (treated as a hyperparameter) and the softmax output σ(F (x; θ)) represents the
mean—which is valid since it is an element of ∆c. The benefits are two-fold: First, since we focus
solely on the mean, it is easier for optimization [18]. Indeed, we found that the alternatives, such as
αk(F (x; θ)) = exp(Fk(x; θ)) yield worse results. Second, after training, we can use the softmax
output of F as usual without additional steps, i.e. when making prediction, we can treat the network
as if it was trained using the standard softmax-Categorical likelihood.

Method 4: Mixed Labels (ML)

There is a technical issue when using the Dirichlet likelihood for the in-distribution data: It is known
that the Dirichlet likelihood does not work well with one-hot encoded vectors and harder to optimize
than the Categorical likelihood [19]. To see this, notice in (1) that the logarithm is applied on yk, in
contrast to σk(F (x; θ)) in the Categorical likelihood. If y is a one-hot encoded vector, this implies
that for all but one k ∈ {1, . . . , c}, the expression log yk is undefined and thus the entire log-
likelihood also is. While one can mitigate this issue via e.g. label smoothing [19, 20], ultimately we
found that models with the Dirichlet likelihood generalize worse than their Categorical counterparts.
Fortunately, the Dirichlet log-likelihood (1) does not suffer from this issue when used for OOD data
because their label u is the uniform probability vector—in particular, all components of u are strictly
larger than zero.

Motivated by these observations, we combine the best of best worlds in the stability of the Categor-
ical likelihood in modeling “hard” one-hot encoded labels (or equivalently, integer labels) and the
flexibility of the Dirichlet likelihood in modeling soft labels. To this end, we assume that all the
in-distribution data in D have the standard integer labels, while all the OOD data in Dout have soft
labels. Then, assuming D̃ = D qDout, we define the following “mixed” log-likelihood:

log p(D̃|θ) :=

m∑
i=1

log pCat(y
(i)|x(i), θ) +

mout∑
i=1

log pDir(u|x(i)out, θ).

1The term “soft label” here is different than “fuzzy label” [16, 17] where it is not constrained to sum to one.
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The implicit assumption of this formulation is that, unlike the two previous methods, we have two
distinct generative processes for generating the labels of input points in U and V . Data inD can thus
have a different “data type” than data in Dout. This method can therefore be interpreted as solving a
multi-task or multi-modal learning problem.

Appendix B OOD Test Sets

For image-based OOD detection tasks, we use the following test sets on top of MNIST, F-MNIST,
SVHN, CIFAR-10, and CIFAR-100:

• E-MNIST: Contains handwritten letters (“a”-“z”)—same format as MNIST [21].
• K-MNIST: Contains handwritten Hiragana scripts—same format as MNIST [22].
• LSUN-CR: Contains real-world images of classrooms [23].
• CIFAR-GR: Obtained by converting CIFAR-10 test images to grayscale.
• F-MNIST-3D: Obtained by converting single-channel F-MNIST images into three-

channel images—all these three channels have identical values.
• UNIFORM: Obtained by drawing independent uniformly-distributed random pixel.
• SMOOTH: Obtained by permuting, smoothing, and contrast-rescaling the original (i.e. the

respective in-distribution) test images [6].

Meanwhile, for text classification, we use the following OOD test set, following [4]:

• MULTI30K: Multilingual English-German image description dataset [24].
• WMT16: Machine-translation dataset, avaliable at http://www.statmt.org/wmt14/
translation-task.html.

• SNLI: Collection of human-written English sentence pairs manually labeled for balanced
classification with the labels entailment, contradiction, and neutral [25].

Finally, for dataset-shift robustness tasks, we use the standard dataset:

• CIFAR-10-C: Contains 19 different perturbations—e.g. snow, motion blur, brightness
rescaling—with 5 level of severity for a total of 95 distinct shifts [26, 10].

Appendix C Details

Training: Non-Bayesian For MNIST and F-MNIST, we use a five-layer LeNet architecture.
Meanwhile, for SVHN, CIFAR-10, and CIFAR-100, we use WideResNet-16-4 [27]. For all meth-
ods, the training procedures are as follows. For LeNet, we use Adam with initial learning rate of
1× 10−3 and annealed it using the cosine decay method [28] along with weight decay of 5× 10−4

for 100 epochs. We use a batch size of 128 for both in- and out-distribution batch, amounting to an
effective batch size of 256 in the case of OOD training. The standard data augmentation pipeline
(random crop and horizontal flip) is applied to both in-distribution and OOD data. For WideResNet-
16-4, we use SGD instead with an initial learning rate of 1× 10−1 and Nesterov momentum of
0.9 along with the dropout regularization with rate 0.3—all other hyperparameters are identical to
LeNet. Finally, we use 5 ensemble members for DE.

Training: Bayesian For both LA, VB, and their variants (i.e. LA+X and VB+X), we use the
identical setup as in the non-Bayesian training above. Additionally, for LA and LA+X, we use the
diagonal Fisher matrix as the approximate Hessian. Moreover, we tune prior variance by minimizing
the validation Brier score. All predictions are done using 20 MC samples. For VB and VB+X, we
use a diagonal Gaussian variational posterior for both the last-layer weight matrix and bias vector.
Moreover, the prior is a zero-mean isotropic Gaussian with prior precision 5× 10−4 (to emulate the
choice of the weight decay in the non-Bayesian training). The trade-off hyperparameter τ of the
ELBO is set to the standard value of 0.1 [1, 29]. We do not use weight decay on the last layer since
the regularization of its parameters is done by the KL-term of the ELBO. Lastly, we use 5 and 200
MC samples for computing the ELBO and for making predictions, respectively.
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Table 2: Test accuracy / ECE, averaged over five prediction runs. Best values in each categories are
in bold.

MNIST F-MNIST SVHN CIFAR10 CIFAR100

MAP 99.4 / 6.4 92.4 / 13.9 97.4 / 8.9 94.8 / 10.0 76.7 / 14.3
DE 99.5 / 8.6 93.6 / 3.6 97.6 / 3.5 95.7 / 4.5 80.0 / 1.9
OE 99.4 / 5.3 92.3 / 12.1 97.4 / 10.6 94.6 / 13.2 76.7 / 15.0

VB 99.5 / 11.2 92.4 / 3.7 97.5 / 5.7 94.9 / 5.8 75.4 / 8.3
+NC 99.4 / 12.6 92.2 / 3.3 97.5 / 4.1 94.4 / 5.5 74.1 / 10.7
+SL 99.5 / 10.5 93.1 / 6.3 97.6 / 9.3 93.0 / 11.0 71.4 / 13.0
+ML 99.3 / 11.8 92.0 / 2.5 97.6 / 4.2 95.0 / 4.9 75.4 / 10.4
+OE 99.4 / 10.0 92.3 / 3.0 97.6 / 5.7 94.8 / 4.6 74.2 / 8.9

LA 99.4 / 7.6 92.5 / 11.3 97.4 / 3.3 94.8 / 7.5 76.6 / 8.3
+NC 99.4 / 5.4 92.4 / 8.5 97.3 / 4.6 94.0 / 6.6 76.2 / 6.1
+SL 99.7 / 12.1 93.2 / 3.2 97.5 / 7.4 93.6 / 10.2 72.3 / 7.1
+ML 99.4 / 7.5 92.5 / 5.9 97.4 / 2.9 94.8 / 6.9 76.5 / 4.4
+OE 99.4 / 4.8 92.3 / 7.4 97.4 / 3.2 94.6 / 8.8 76.7 / 4.4

Table 3: OOD data detection in terms of FPR95. Values are averages over six OOD test sets and
five prediction runs—lower is better. Best values of each categories are in bold.

Methods MNIST F-MNIST SVHN CIFAR-10 CIFAR-100

MAP 17.7 69.4 22.4 52.4 81.0
DE 10.6 61.4 10.1 32.3 73.3
OE 5.4 16.2 2.1 22.8 54.0

VB 25.7 63.3 22.0 36.5 77.6
+NC 7.5 15.0 1.4 28.0 49.9
+SL 2.7 4.2 1.8 40.4 62.3
+ML 7.4 19.6 1.4 29.1 50.2
+OE 6.8 22.4 1.5 29.8 53.3

LA 19.4 68.7 17.1 53.6 81.3
+NC 6.6 8.3 1.5 20.1 47.4
+SL 2.2 4.1 1.0 38.5 60.9
+ML 5.5 14.3 1.1 21.8 52.5
+OE 5.4 17.0 1.1 23.3 53.9

Text Classification The network used is a two-layer Gated Recurrent Unit [GRU, 30] with 128
hidden units on each layer. The word-embedding dimension is 50 and the maximum vocabulary
size is 10000. We put an affine layer on top of the last GRU output to translate the hidden units
to output units. Both the LA and VB are applied only on this layer. We use batch size of 64 and
Adam optimizer with learning rate of 0.01 without weight decay, except for LA in which case we
use weight decay of 5× 10−4. The optimization is done for 5 epochs, following [4].

Appendix D Additional Results

D.1 Generalization and Calibration

We present the generalization and calibration performance in Table 2. We note that generally, all the
proposed methods attain comparable accuracy to and are better calibrated than the vanilla MAP/OE
models. However, the “soft label” method tends to underperform in both accuracy and ECE—this
can be seen clearly on CIFAR-100. This issue appears to be because of the numerical issue we have
discussed before in Appendix A. Note that this issue seems to also plague other Dirichlet-based
methods [19, 31]. Overall, it appears that Bayesian OOD training with NC, ML, and OE is not
harmful to the in-distribution performance—they are even more calibrated than the frequentist OE.
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Table 4: OOD data detection on text classification tasks. Values are averages over five prediction
runs and additionally, three OOD test sets for FPR95.

ECE FPR95

Methods SST TREC SST TREC

MAP 20.8 17.2 100.0 96.3
DE 2.5 10.6 100.0 24.2
OE 13.0 9.4 0.0 0.0

LA 21.0 17.3 100.0 96.4
+NC 17.9 18.6 0.0 0.0
+SL 17.5 10.4 95.3 0.8
+ML 11.4 11.5 84.6 0.0
+OE 12.8 8.4 0.0 0.0

Table 5: OOD data detection under models trained with synthetic noises asDout. Values are FPR95,
averaged over five prediction runs and all OOD test sets.

Methods SVHN CIFAR-10 CIFAR-100

MAP 22.4 52.4 81.0
OE 11.4 31.0 60.1

LA 17.1 53.6 81.3
+NC 10.5 26.4 64.5
+SL 93.7 37.9 68.6
+ML 14.4 28.4 61.0
+OE 10.1 35.3 56.4

D.2 OOD Detection

We present the OOD detection results on image classification datasets in Table 3. As indicated in
Fig. 1, OE is in general significantly better than even DE while retaining the computational efficiency
of MAP. The vanilla Bayesian baselines, represented by VB and LA, achieve worse results than DE
(and thus OE). But, when OOD training is employed to train these BNNs using the four methods
we considered, their performance improves. We observe that all Bayesian OOD training methods
generally yield better results than DE and become competitive to OE. In particular, while the “soft-
label” method (SL) is best for “easy” datasets (MNIST, F-MNIST), we found that the simplest “none
class” method (NC) achieves the best results in general.

In Table 4, we additionally show the results on text classification datasets. We found that the OOD
training methods consistently improve both the calibration and OOD-detection performance of the
vanilla Bayesian methods, making them on par with OE. As before, the “none class” method per-
forms the best in OOD detection. This is a reassuring result since NC is also the most philosophically
clean (i.e. requires fewer heuristics) than the other three methods considered.

A common concern regarding OOD training is the choice of Dout. As an attempt to address this,
in Table 5 we provide results on OOD detection when the model is trained using a synthetic noise
dataset, instead of the 32×32 ImageNet dataset. The noise dataset used here is the “smooth noise”
dataset [6], obtained by permuting, blurring, and contrast-rescaling the original training dataset. We
found that even with such a simple OOD dataset, we can still generally obtain better results than
OE.

Finally, we show that OOD training is beneficial not only for the LA and VB baselines. In Table 6,
we consider two recent (all-layer) BNNs: a VB with the flipout estimator [Flipout, 32] and the
cyclical stochastic-gradient Hamiltonian Monte Carlo [CSGHMC, 33]. Evidently, OOD training
improve their OOD detection performance by large margin. Moreover, we also note that OOD
training also improves the performance of DE.
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Table 6: OOD data detection with more sophisticated base models. Values are FPR95, averaged
over five prediction runs and all OOD test sets.

Methods CIFAR-10 CIFAR-100

Flipout 65.0 85.4
+NC 40.9 56.2

CSGHMC 60.3 81.0
+NC 25.0 43.0

DE 32.3 73.3
+NC 17.0 44.4
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Figure 2: Dataset shift performance on the CIFAR-10-C dataset (lower is better).

D.3 Dataset-Shift Robustness

In this UQ task, OOD training is beneficial for both MAP and the vanilla Bayesian methods (VB,
LA), making them competitive to the state-of-the-art DE’s performance in larger severity levels,
see Fig. 2. Moreover, the OOD-trained VB and LA are in general more calibrated than OE, which
shows the benefit of the Bayesian formalism vis-á-vis the point-estimated OE. This indicates that
both being Bayesian and considering OOD data during training are beneficial.

Even though it is the best in OOD detection, here we observe that NC is less calibrated in terms of
ECE than its counterparts. This might be due to the incompatibility of calibration metrics with the
additional class: When the data are corrupted, they become closer to the OOD data, and thus NC
tends to assign higher probability mass to the last class which does not correspond to any of the true
classes (contrast this to other the approaches). Therefore, in this case, the confidence over the true
class becomes necessarily lower—more so than the other approaches. Considering that calibration
metrics depend on the confidence of the true class, the calibration of NC thus suffers. One way to
overcome this issue is to make calibration metrics aware of the “none class”, e.g. by measuring
calibration only on data that have low “none class” probability. We leave the investigation for future
research.

D.4 Costs

The additional costs associated with all the OOD-training methods presented here are negligible:
Like other non-Bayesian OOD-training methods, the only overhead is the additional minibatch of
OOD training data at each training iteration. That is, these costs are similar to when considering
a standard training procedure with double the minibatch size. Additionally for LA, in its Hessian
computation, one effectively computes it with twice the number of the original data. However, this
only needs to be done once post-training.
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Appendix E Non-Averaged Results

The detailed, non-averaged results for the FPR95 metric are in Table 7. For the full results of FPR95
with the SMOOTH noise dataset as Dout are in Table 8. Furthermore, the full results of the NLP
experiment is in Table 9. Finally, detailed, non-averaged results for OOD detection with Flipout and
CSGHMC are in Table 10.

Table 7: OOD data detection in terms of FPR95. Lower is better. Values are averages over five
prediction runs.

VB LA
Datasets MAP OE DE Plain NC1 NC2 SL ML OE Plain NC1 NC2 SL ML OE
MNIST
F-MNIST 11.8 0.0 5.3 12.5 0.1 0.0 0.0 0.4 1.1 12.0 0.2 0.0 0.0 0.1 0.0
E-MNIST 35.6 26.4 30.4 34.5 34.7 32.8 14.3 34.2 31.4 35.8 30.6 19.5 12.6 26.8 26.7
K-MNIST 14.4 5.9 7.7 14.0 10.5 8.1 2.1 9.7 8.5 14.5 8.9 6.5 0.7 5.8 5.9
CIFAR-Gr 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
Uniform 44.3 0.0 19.8 93.1 0.0 0.0 0.0 0.0 0.0 54.2 0.0 0.0 0.0 0.0 0.0
Smooth 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
F-MNIST
MNIST 73.5 38.5 65.8 66.8 43.5 10.4 9.5 50.1 57.2 72.2 25.6 3.5 11.5 38.9 39.9
E-MNIST 73.6 21.0 58.6 68.1 18.7 3.0 5.0 34.0 40.6 72.2 6.0 0.5 4.6 14.7 23.1
K-MNIST 73.7 37.4 47.2 62.6 28.0 6.1 10.6 33.4 36.7 71.6 18.2 1.8 8.7 32.5 38.7
CIFAR-Gr 87.2 0.0 86.6 75.3 0.0 0.0 0.0 0.0 0.0 87.7 0.0 0.0 0.0 0.0 0.0
Uniform 81.3 0.0 86.3 87.3 0.0 0.0 0.0 0.0 0.0 81.0 0.0 0.0 0.0 0.0 0.1
Smooth 26.8 0.0 24.2 19.6 0.0 0.0 0.0 0.2 0.1 27.3 0.0 0.0 0.0 0.0 0.0
SVHN
CIFAR-10 18.9 0.1 9.5 15.0 0.3 0.1 0.2 0.0 0.1 15.4 0.4 0.0 0.0 0.0 0.1
LSUN-CR 19.7 0.0 8.3 17.2 0.0 0.0 0.0 0.0 0.0 15.5 0.0 0.0 0.0 0.0 0.0
CIFAR-100 21.8 0.2 11.6 18.1 0.5 0.2 0.5 0.1 0.2 17.6 0.6 0.1 0.2 0.2 0.1
FMNIST-3D 26.7 0.0 17.5 24.5 0.0 0.0 0.6 0.0 0.0 27.2 0.1 0.0 0.0 0.0 0.0
Uniform 30.0 0.0 6.4 48.2 0.0 0.0 0.0 0.0 0.0 17.0 0.0 0.0 0.0 0.0 0.0
Smooth 17.3 12.0 6.9 9.1 7.7 9.7 9.5 8.3 8.4 10.1 8.1 5.3 5.9 6.6 6.4

CIFAR-10
SVHN 34.5 10.0 33.9 33.5 30.6 5.3 59.4 18.3 33.9 35.5 12.7 2.6 47.2 8.7 10.8
LSUN-CR 53.3 28.0 44.0 49.4 25.9 8.3 43.7 36.8 34.8 53.8 17.5 1.3 41.2 30.1 28.4
CIFAR-100 61.2 57.8 52.5 58.4 58.5 55.3 63.3 56.8 57.1 61.4 59.6 62.6 62.2 60.4 57.9
FMNIST-3D 42.4 26.8 30.7 37.4 19.0 5.4 43.9 32.2 29.6 43.2 15.4 2.8 36.8 24.2 27.8
Uniform 87.7 0.0 0.0 13.8 0.0 0.0 0.0 0.0 0.0 92.8 0.0 0.0 0.0 0.0 0.0
Smooth 35.1 14.2 32.9 26.4 34.0 8.1 31.9 30.3 23.1 34.9 15.5 2.8 43.6 7.5 14.9

CIFAR-100
LSUN-CR 82.0 64.3 75.3 73.8 62.3 23.9 76.3 65.3 67.6 82.8 55.9 13.5 75.6 65.3 64.1
CIFAR-10 79.8 81.9 76.4 78.2 81.4 90.9 82.8 79.5 79.0 79.5 80.9 91.4 81.7 80.8 80.0
FMNIST-3D 65.8 58.5 61.8 57.1 41.0 14.0 72.0 51.7 56.0 66.1 58.6 21.1 69.0 59.2 59.3
Uniform 97.6 0.0 94.3 100.0 0.0 0.0 0.0 0.0 0.0 98.8 0.0 0.0 0.0 0.0 0.0
Smooth 79.5 65.2 58.7 79.1 64.8 29.4 80.2 54.4 64.0 79.2 41.6 2.6 78.0 57.1 66.2
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Table 8: OOD data detection under models trained with random noises [6] as Dout. Values are
FPR95, averaged over ten prediction runs—lower is better.

VB LA
Datasets MAP OE DE Plain NC1 NC2 SL ML OE Plain NC1 NC2 SL ML OE
MNIST
F-MNIST 11.8 6.8 5.3 12.5 6.5 6.5 0.6 11.9 10.3 12.0 8.2 4.3 0.0 6.3 6.8
E-MNIST 35.6 30.7 30.4 34.5 35.1 42.4 17.9 37.3 34.3 35.8 34.2 39.2 15.3 31.0 30.7
K-MNIST 14.4 7.8 7.7 14.0 14.5 17.1 1.1 15.8 14.0 14.5 10.6 9.5 0.7 8.5 7.8
CIFAR-Gr 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0
Uniform 44.3 0.7 19.8 93.1 0.0 0.0 0.0 1.9 1.8 54.2 0.7 0.0 0.0 0.6 0.8

F-MNIST
MNIST 73.5 62.2 65.8 66.8 62.2 34.6 30.4 59.1 60.4 72.2 60.8 13.8 24.3 55.4 57.4
E-MNIST 73.6 50.2 58.6 68.1 43.9 13.0 25.7 54.7 54.6 72.2 44.2 3.3 22.5 39.6 48.3
K-MNIST 73.7 47.4 47.2 62.6 31.4 8.2 19.1 35.6 38.1 71.6 33.9 2.9 20.9 31.7 43.0
CIFAR-Gr 87.2 0.5 86.6 75.3 0.1 0.0 0.2 0.8 1.1 87.7 0.7 0.0 0.2 0.7 1.0
Uniform 81.3 26.0 86.3 87.3 47.1 0.6 0.0 0.2 4.9 81.0 43.4 0.0 0.0 22.0 38.1

SVHN
CIFAR-10 18.9 13.8 9.5 15.0 13.0 14.5 16.5 8.4 11.5 15.4 8.4 18.7 94.8 14.9 11.4
LSUN-CR 19.7 9.0 8.3 17.2 10.5 8.8 8.8 5.4 9.1 15.5 8.3 3.5 95.4 12.6 8.2
CIFAR-100 21.8 15.6 11.6 18.1 14.8 16.4 17.9 10.2 12.4 17.6 11.6 21.4 93.9 16.6 13.4
FMNIST-3D 26.7 29.8 17.5 24.5 31.1 34.8 30.4 30.0 25.3 27.2 34.6 70.5 95.1 23.3 27.7
Uniform 30.0 0.0 6.4 48.2 0.0 0.0 0.0 0.0 0.0 17.0 0.0 0.0 90.2 19.0 0.0
CIFAR-10
SVHN 34.5 7.3 33.9 33.5 11.1 3.8 20.6 11.0 9.7 35.5 6.6 0.8 26.0 7.5 8.3
LSUN-CR 53.3 49.0 44.0 49.4 46.7 35.0 61.7 45.7 47.6 53.8 48.9 27.8 54.9 51.9 48.3
CIFAR-100 61.2 58.2 52.5 58.4 57.7 49.6 71.1 56.3 56.6 61.4 59.3 49.4 70.7 57.6 59.0
FMNIST-3D 42.4 44.9 30.7 37.4 39.4 24.3 62.7 43.3 44.0 43.2 40.2 14.1 57.8 40.8 46.4
Uniform 87.7 26.7 0.0 13.8 100.0 100.0 57.3 98.0 100.0 92.8 3.5 0.0 17.7 12.9 49.8

CIFAR-100
LSUN-CR 82.0 79.7 75.3 73.8 80.9 83.9 91.5 77.9 71.1 82.8 82.0 85.3 78.5 72.8 79.7
CIFAR-10 79.8 80.5 76.4 78.2 81.3 86.9 93.9 80.0 81.4 79.5 80.6 88.9 82.1 78.8 80.2
FMNIST-3D 65.8 66.9 61.8 57.1 69.3 42.1 93.6 63.1 61.9 66.1 71.2 60.8 82.0 64.4 67.9
Uniform 97.6 73.3 94.3 100.0 99.7 49.5 95.4 99.5 99.8 98.8 88.4 100.0 100.0 88.9 54.0

Table 9: OOD data detection on text classification tasks. Values are FPR95, averaged over five
prediction runs—lower is better.

LA

Datasets MAP OE DE Plain NC1 NC2 SL ML OE

SST
SNLI 100.0 0.0 100.0 100.0 0.0 0.0 97.0 89.6 0.0
Multi30k 100.0 0.0 100.0 100.0 0.0 0.0 99.5 83.5 0.0
WMT16 100.0 0.0 100.0 100.0 0.0 0.0 89.3 80.7 0.0

TREC
SNLI 99.7 0.0 31.0 99.7 0.0 0.0 0.7 0.0 0.0
Multi30k 100.0 0.0 14.2 100.0 0.0 0.0 0.8 0.0 0.0
WMT16 89.2 0.0 27.3 89.3 0.0 0.0 0.8 0.0 0.0
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Table 10: OOD data detection with more sophisticated base models. Values are FPR95, averaged
over five prediction runs.

Flipout CSGHMC DE

Datasets Plain NC Plain NC Plain NC

CIFAR-10
SVHN 72.1 39.6 56.8 16.4 33.9 8.1
LSUN-CR 63.7 37.5 56.7 24.0 44.0 18.3
CIFAR-100 74.5 70.4 63.4 63.1 52.5 51.7
FMNIST-3D 65.0 38.2 51.0 14.8 30.7 10.3
Uniform 53.8 0.0 87.0 0.0 0.0 0.0
Smooth 61.1 59.6 47.1 31.9 32.9 13.6

CIFAR-100
LSUN-CR 85.8 55.6 79.3 38.0 75.3 54.0
CIFAR-10 86.1 87.0 82.1 84.2 76.4 78.5
FMNIST-3D 73.4 65.8 67.0 45.5 61.8 50.0
Uniform 99.7 0.0 93.8 0.0 94.3 0.0
Smooth 82.0 72.5 83.0 47.2 58.7 39.3
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