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Abstract

High-quality estimates of uncertainty and robustness are crucial for numerous real-world
applications, especially for deep learning which underlies many deployed ML systems. The
ability to compare techniques for improving these estimates is therefore very important for
research and practice alike. Yet, competitive comparisons of methods are often lacking due
to a range of reasons, including: compute availability for extensive tuning, incorporation of
sufficiently many baselines, and concrete documentation for reproducibility. In this paper
we introduce Uncertainty Baselines: high-quality implementations of standard and state-of-
the-art deep learning methods on a variety of tasks. As of this writing, the collection spans
19 methods across 9 tasks, each with at least 5 metrics. Each baseline is a self-contained
experiment pipeline with easily reusable and extendable components. Our goal is to provide
immediate starting points for experimentation with new methods or applications. Addition-
ally we provide model checkpoints, experiment outputs as Python notebooks, and leader-
boards for comparing results. https://github.com/google/uncertainty-baselines
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1. Introduction

Baselines on standardized benchmarks are crucial to machine learning research for measur-
ing whether new ideas yield meaningful progress. However, reproducing the results from
previous works can be extremely challenging, especially when only reading the paper text
(Sinha et al., 2020; D’Amour et al., 2020). Having access to the code for experiments is
more useful, assuming it is well-documented and maintained. But even this is not enough.
In fact, in retrospective analyses over a collection of works, authors often find that a simpler
baseline works best in practice, due to flawed experiment protocols or insufficient tuning
(Melis et al., 2017; Kurach et al., 2019; Bello et al., 2021; Nado et al., 2021).

There is a wide spectrum of experiment artifacts made available in papers. A popular
approach is a GitHub dump of code used to run experiments, albeit lacking documentation
and tests. At best, papers might provide actively maintained repositories with examples,
model checkpoints, and ample documentation to extend the work. A single paper can
only go so far however: without community standards, each paper’s codebase differs in
experimental protocol and code organization, making it difficult to compare across papers
within a common benchmark, let alone build jointly on top of multiple papers.

To address these challenges, we created the Uncertainty Baselines library. It provides
high-quality implementations of baselines across many uncertainty and out-of-distribution
robustness tasks. Each baseline is designed to be self-contained (i.e., minimal dependencies)
and easily extensible. We provide numerous artifacts in addition to the raw code so that
others can adapt any baseline to suit their workflow.

Related work. OpenAI Baselines (Dhariwal et al., 2017) is work in similar spirit
for reinforcement learning. Prior work on uncertainty and robustness benchmarks include
Riquelme et al. (2018); Filos et al. (2019); Hendrycks and Dietterich (2019); Ovadia et al.
(2019); Dusenberry et al. (2020b). These all introduce a new task and evaluate a variety
of baselines on that task. In practice, they are unmaintained, focusing on experimental
insights rather than the codebase as the contribution. Our work provides an extensive set
of benchmarks (in several cases, unifying the above ones), has a larger set of baselines across
these benchmarks, and focuses on designing scalable, forkable, and well-tested code.

2. Uncertainty Baselines

Uncertainty Baselines sets up each benchmark as a choice of base model, training dataset,
and a suite of evaluation metrics.

1. Base models (architectures) include Wide ResNet 28-10 (Zagoruyko and Komodakis,
2016), ResNet-50 (He et al., 2016), BERT (Devlin et al., 2018), and simple MLPs.

2. Training datasets include standard machine learning datasets – CIFAR (Krizhevsky
et al., a,b), ImageNet (Russakovsky et al., 2015), and UCI (Dua and Graff, 2017) –
as well as more real-world problems – Clinc Intent Detection (Larson et al., 2019),
Kaggle’s Diabetic Retinopathy Detection (Filos et al., 2019), and Wikipedia Toxicity
(Wulczyn et al., 2017). These span modalities such as tabular, text, and images.

3. Evaluation includes predictive metrics such as accuracy, uncertainty metrics such as
selective prediction and calibration error, compute metrics such as inference latency,
and performance under in- and out-of-distribution datasets.
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split
num_examples
_create_process_example_fn()
_create_process_batch_fn()
load(preprocess_fn: Callable, batch_size) 
    -> tf.data.Dataset

datasets/BaseDataset

_create_process_example_fn()
_create_process_batch_fn()

datasets/Cifar10Dataset

TensorFlow Baseline

--FLAGS.base_learning_rate
--FLAGS.output_dir
--FLAGS.train_epochs
--FLAGS.use_gpu
…

cifar/dropout.py

create_model(**hparams) ->
    tf.keras.Model

models/wide_resnet.py

PyTorch Baseline

--FLAGS.base_learning_rate
--FLAGS.output_dir
--FLAGS.train_epochs
--FLAGS.use_gpu
…

retinopathy/dropout_torch.py

resnet50_dropout_torch(
    **hparams) -> nn.Module

models/resnet50_torch.py

Robustness 
Metrics

_create_process_example_fn()
_create_process_batch_fn()

datasets/DiabeticRetinopathyDataset

Figure 1: The structure for an experiment under the TensorFlow or Pytorch backend.
One instantiates a dataset (Cifar10Dataset or DiabeticRetinopathyDataset) and model
(wide resnet or resnet50 torch) within an end-to-end training script. After training, one
inputs saved model checkpoints into Robustness Metrics for evaluation.

As of this writing, we provide a total of 83 baselines, comprising 19 methods sweeping over
standard and more recent strategies over 9 benchmarks.

Modularity. In order to optimize for researchers to easily experiment on baselines
(specifically, fork them), we designed the baselines to be as modular as possible and with
minimal non-standard dependencies. API-wise, Uncertainty Baselines provides little to
no abstractions: datasets are light wrappers around TensorFlow Datasets (TFDS Team),
models are Keras models, and training/test logic is in raw TensorFlow (Abadi et al., 2015)
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Figure 2: Performance analysis of a MIMO baseline on a TPUv3-32 using the TensorFlow
Profiler. The runtime is optimized, bound only by model operations, an irreducible bottle-
neck for a given baseline. Our implementations have 100% utilization of the TPU devices.

This allows new users to more easily run individual examples, or incorporate our datasets
and/or models into their libraries. For out-of-distribution evaluation, we plug our trained
models into Robustness Metrics (Djolonga et al., 2020). Figure 1 illustrates how the modules
fit together.

Framework. Uncertainty Baselines is framework-agnostic. The dataset and metric
modules are NumPy-compatible, and interoperate in a performant manner with modern
deep learning frameworks including TensorFlow, Jax, and PyTorch. For example, our base-
lines on the JFT-300M dataset use raw JAX, and we include a PyTorch Monte Carlo
Dropout baseline on the Diabetic Retinopathy dataset. In practice, for ease of code and
performance comparison, we choose a specific backend for each benchmark and develop all
baselines under that backend (most often TensorFlow). Our Jax and PyTorch baselines
demonstrate that implementation with other frameworks is supported and straightforward.

Hardware. All baselines run on CPU, GPU, or Google Cloud TPUs. Baselines are
optimized for a default hardware configuration and often assume a memory requirement
and number of chips (e.g., 1 GPU, or TPUv2-32) in order to reproduce the results. We
employ the latest coding practices to fully utilize accelerator chips (Figure 2) so researchers
can leverage the most performant baselines.

Hyperparameters. Hyperparameters and other experiment configuration values easily
number in the dozens for a given baseline. Uncertainty Baselines uses standard Python flags
to specify hyperparameters, setting default values to reproduce best performance. Flags are
simple, require no additional framework, and are easy to plug into other pipelines or extend.
We also document the protocol to properly tune and evaluate baselines—a common source
of discrepancy in papers.

Reproducibility. All modules include testing, and all results are reported over mul-
tiple seeds. Computing metrics on trained models can be prohibitively expensive let alone
training from scratch. Therefore we also provide TensorBoard dashboards which include all
training, tuning, and evaluation metrics. An example can be found here.

3. Results

To provide an example of Uncertainty Baselines’ features, we display baselines available on
1 of 9 tasks: ImageNet. Figure 3 displays accuracy and calibration error across 8 base-
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Figure 3: 8 baselines evaluated on ImageNet, ImageNet-C, ImageNet-A, and ImageNetV2
(matched frequency variant). (top) Top-1 accuracy. (bottom) Expected calibration error.
Results demonstrate the many baselines available with competitive performance.
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Figure 4: ImageNet baseline applied to deferred prediction. In this task, one defers predic-
tions according to the model’s confidence (left) or a desired data retention rate (right).

lines, evaluated on in- and out-of-distribution.1 Figure 4 provides an example of applying
such baselines to a downstream task. Overall, the results demonstrate only a sampling of
the repository’s capabilities. We are excited to see new research already building on the
baselines.

1 We omit a legend to avoid drawing comparisons among which specific baselines perform best. See our full
leaderboards to draw those insights at baselines/imagenet/README.md.
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Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural
language models. arXiv preprint arXiv:1707.05589, 2017.

Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip Torr, and
Puneet Dokania. The intriguing effects of focal loss on the calibration of deep neural
networks. 2019.

Zachary Nado, Justin M Gilmer, Christopher J Shallue, Rohan Anil, and George E Dahl.
A large batch optimizer reality check: Traditional, generic optimizers suffice across batch
sizes. arXiv preprint arXiv:2102.06356, 2021.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin,
Joshua V Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your
model’s uncertainty? evaluating predictive uncertainty under dataset shift. arXiv preprint
arXiv:1906.02530, 2019.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An
empirical comparison of bayesian deep networks for thompson sampling. arXiv preprint
arXiv:1802.09127, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,
and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal
of Computer Vision (IJCV), 115(3):211–252, 2015.

Koustuv Sinha, Joelle Pineau, Jessica Forde, Rosemary Nan Ke, and Hugo Larochelle.
Neurips 2019 reproducibility challenge. ReScience C, 6(2):11, 2020.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In International conference on machine
learning, pages 1139–1147. PMLR, 2013.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper

8

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


Uncertainty Baselines

with convolutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1–9, 2015.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International Conference on Machine Learning, pages 6105–6114. PMLR,
2019.

TFDS Team. TensorFlow Datasets, a collection of ready-to-use datasets. https://www.

tensorflow.org/datasets.

Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to
efficient ensemble and lifelong learning. arXiv preprint arXiv:2002.06715, 2020.

Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter en-
sembles for robustness and uncertainty quantification. arXiv preprint arXiv:2006.13570,
2020.

Ellery Wulczyn, Nithum Thain, and Lucas Dixon. Ex machina: Personal attacks seen at
scale. In Proceedings of the 26th International Conference on World Wide Web, WWW
’17, pages 1391–1399, Republic and Canton of Geneva, CHE, 2017. International World
Wide Web Conferences Steering Committee. ISBN 9781450349130. doi: 10.1145/3038912.
3052591. URL https://doi.org/10.1145/3038912.3052591.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Appendix A. Supported Baselines

Appendix B. Dataset Details

For CIFAR10 and CIFAR100, we padded the images with 4 pixels of 0’s before doing
a random crop to 32x32 pixels, followed by a left-right flip with 50% chance. For Ima-
geNet, we used ResNet preprocessing as described in He et al. (2016), but also support
the common Inception preprocessing from Szegedy et al. (2015). All preprocessing is de-
terministic given a random seed, using tf.random.experimental.stateless split and
tf.random.experimental.stateless fold in. For the Diabetic Retinopathy benchmarks
we used the Kaggle competition dataset as in Filos et al. (2019).

Appendix C. Model Details

For CIFAR10 and CIFAR100 we provide methods based on the Wide ResNet models, typ-
ically the Wide ResNet-28 size (Zagoruyko and Komodakis, 2016). For ImageNet and the
Diabetic Retinopathy benchmarks, we provide methods based on the ResNet-50 model (He
et al., 2016). For ImageNet we additionally use methods based on the EfficientNet models
(Tan and Le, 2019). For the Toxic Comments and CLINC Intent Detection benchmarks,
our methods are based on the BERT-Base model (Devlin et al., 2018).
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Appendix D. Hyperparameter Tuning

All image benchmarks were trained with Nesterov momentum (Sutskever et al., 2013),
except for the EfficientNet models which use RMSProp with ρ = 0.9, ε = 10−3. The text
benchmarks were trained with the AdamW optimizer (Loshchilov and Hutter, 2017) with
a β2 = 0.999, ε = 10−6. Unless otherwise noted, the image benchmarks used a linear
warmup followed by a stepwise decay schedule, except for the EfficientNet models which
used a linear warmup followed by an exponential decay. The text benchmarks used a linear
warmup followed by a linear decay.

For the CIFAR10, CIFAR100, ImageNet, Toxic Comments, and CLINC Intent Detection
benchmarks, the papers for each method contain their tuning details.

Diabetic Retinopathy benchmark tuning details. For the Diabetic Retinopathy
benchmark, we also provide our tuning results so that others can more easily retune their
own methods. We conducted two rounds of quasirandom search on several hyperparameters
(learning rate, momentum, dropout, variational posteriors, L2 regularization), where the
first round was a heuristically-picked larger search space and the second round was a hand-
tuned smaller range around the better performing values. Each round was for 50 trials,
and the final hyperparameters were selected using the final validation AUC from the second
tuning round. We finally retrained this best hyperparameter setting on the combined train
and validation sets.
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Dataset Method

CIFAR (Krizhevsky, 2009) BatchEnsemble (Wen et al., 2020)

Hyper-BatchEnsemble (Wenzel et al., 2020)

MIMO (Havasi et al., 2020)

Rank-1 BNN (Gaussian)
(Dusenberry et al., 2020a)

Rank-1 BNN (Cauchy)

SNGP (Liu et al., 2020)

MC-Dropout
(Gal and Ghahramani, 2016)

Ensemble
(Lakshminarayanan et al., 2016)

Hyper-deep ensemble (Wenzel et al., 2020)

Variational Inference (Blundell et al., 2015)

Heteroscedastic (Collier et al., 2021)

CLINC (Larson et al., 2019) SNGP

MC-Dropout

Ensemble

Diabetic Retinopathy Detection (Filos et al., 2019) MC-Dropout

Ensemble

Radial Bayesian Neural Networks
(Farquhar et al., 2020)

Variational Inference

ImageNet (Russakovsky et al., 2015) MixUp (Carratino et al., 2020)

BatchEnsemble

Hyper-BatchEnsemble

MIMO

Rank-1 BNN (Gaussian)

Rank-1 BNN (Cauchy)

SNGP

MC-Dropout

Ensemble

Hyper-deep ensemble

Variational Inference

Heteroscedastic

MNIST (LeCun and Cortes, 2010) Variational Inference

Toxic Comments Detection (Conversation AI, 2017) SNGP

MC-Dropout

Ensemble

Focal Loss (Mukhoti et al., 2019)

UCI (Dua and Graff, 2017) Variational Inference

Table 1: Currently implemented methods for each dataset, in addition to a deterministic
baseline. See repository for a more updated list.
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Appendix E. Open-Source Data

The tuning and final metrics data for the Diabetic Retinopathy benchmarks can be found
at the following URLs:

• Deterministic First Tuning

• Deterministic Final Tuning

• Deterministic 10 seeds

• Dropout First Tuning

• Dropout Final Tuning

• Dropout 10 seeds

• Variational Inference First Tuning

• Variational Inference Final Tuning

• Variational Inference 10 seeds

• Radial BNN First Tuning

• Radial BNN Final Tuning

• Radial BNN 10 seeds
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https://tensorboard.dev/experiment/mPZt9k0lQ1yF2TAuE2cxqw/
https://tensorboard.dev/experiment/5CzJYikVTvKQLdqSnmUrpg/
https://tensorboard.dev/experiment/RDf1PKZkSZ2PGo1H8wnWBw/
https://tensorboard.dev/experiment/040rBdKBQPir8cDhReyk3A/
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