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Abstract

The connection between Bayesian neural networks and Gaussian processes gained
a lot of attention in the last few years, with the flagship result that hidden units
converge to a Gaussian process limit when the layers width tends to infinity. Un-
derpinning this result is the fact that hidden units become independent in the
infinite-width limit. Our aim is to shed some light on hidden units dependence
properties in practical finite-width Bayesian neural networks. In addition to theo-
retical results, we assess empirically the depth and width impacts on hidden units
dependence properties.

1 Introduction

Pre-activations and post-activations of layer ` in Bayesian neural networks are respectively defined as

g(`) = W (`)T
h(`−1), h(`) = φ(g(`)), (1)

where W (`) ∈ RH`−1×RH` are weights that follow some prior distribution, φ is a nonlinear function
called activation function, g(`) ∈ RH` is a vector of pre-activations, and h(`) ∈ RH` is a vector of
post-activations. For ` = 0, h(0) is an input vector of deterministic numerical object features. For
` > 0, H` is the width of layer `. When we talk about both g(`) or h(`) or when we do not need to
specify if we consider pre-activations or post-activations, we refer to units of layer `. The distributions
induced on units are priors in functional space, or induced priors, also called prior predictives in the
literature.

Induced priors in Bayesian neural networks with Gaussian weights become Gaussian processes when
the number of hidden units per layer tends to infinity (Neal, 1996; Matthews et al., 2018; Lee et al.,
2018; Garriga-Alonso et al., 2019). Stable distributions also lead to stable processes which are
generalizations of Gaussian ones (Favaro et al., 2020). Tightening hidden units closer to the Gaussian
process can be considered as reducing the induced dependence between units. Since it is not the
case for finite-width neural networks, dealing with the induced dependence is one of the problems in
describing the prior predictive.

In this note, we focus on dependence properties that help in better characterizing hidden unit priors.
We study dependence properties between hidden units in Bayesian neural networks and establish
analytically, in Section 2, and empirically, as illustrated on Figure 1, positive and negative dependence
induced by weight priors.

2 Dependence properties

We start by showing that hidden units of the same layer are uncorrelated for uncorrelated weights.
This theorem refines the non-negative covariance theorem from Vladimirova et al. (2019), the proof
is deferred to Appendix A.
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Figure 1: Influence of neural network width H (first row) and depth L (second row) on the units
dependence measured through ∆(L)(z1, z2), defined in Equation (2).

Theorem 2.1 (Covariance between hidden units). Consider a Bayesian neural network as described
in Equation (1) with ReLU activation function. Assume that weights w(`) are centered and indepen-
dent from units h(`−1). If weights are uncorrelated, then any pre-activations of the same layer `
are uncorrelated.

Let g(`) and g̃(`) be two distinct pre-nonlinearities of layer `, and define

∆(`)(z1, z2) := P(g(`) ≥ z1, g̃
(`) ≥ z2)− P(g(`) ≥ z1)P(g̃(`) ≥ z2). (2)

The following theorem represents how the sign of ∆(`)(z1, z2) depends on signs of z1 and z2. Usually
the weights in Bayesian neural networks are assumed to be independent (Neal, 1996; Matthews
et al., 2018; Lee et al., 2018; Garriga-Alonso et al., 2019). However, some works (Garriga-Alonso
and van der Wilk, 2021; Fortuin et al., 2021) proposed correlated priors for convolutional neural
networks since trained weights are empirically strongly correlated. They showed that these correlated
priors can improve overall performance. Our results take into account Bayesian neural networks
with possibly dependent priors. More precisely, for `-th layer pre-activations gj =

∑H`−1

i=1 Wijhi,
j ∈ {1, . . . ,H`}, weights Wi1j and Wi2j can be dependent for distinct i1, i2 ∈ {1, . . . ,H`−1},
while Wij1 and Wij2 are independent for any distinct j1, j2 ∈ {1, . . . ,H`}. By applying Lemma A.2
and A.3 from Appendix, we have the relationship between ∆ and values of z1, z2:
Theorem 2.2 (Hidden units dependence). Consider a Bayesian neural network as described in
Equation (1) with some activation function φ. Let elements of weight vector W (`) follow some
zero-center elliptical (possibly different and possibly dependent) distributions, and weight vectors
be independent for distinct units of the following layer. If ` = 1, then ∆(`)(z1, z2) = 0 for all
z1, z2. If ` ≥ 2, then ∆(`)(z1, z2) ≥ 0 if z1z2 ≥ 0, and ∆(`)(z1, z2) ≤ 0 otherwise. If (and only
if) the activation function φ satisfies P

(
φ(g(`)) = 0

)
= 0 for any g(`), then ∆(`)(0, z2) = 0 and

∆(`)(z1, 0) = 0 for any z1, z2.

The case of P
(
φ(g(`)) = 0

)
= 0 corresponds to post-activations without critical mass at zero. They

can be obtained after applying activation functions such as identity, sigmoid, ELU, and others, but
not ReLU.
Remark 2.1. Due to the ellipticity and zero-centering of distributions, the statement of Theorem 2.2
is also true for ∆̃(`)(z1, z2) := P(g(`) ≤ z1, g̃

(`) ≤ z2)− P(g(`) ≤ z1)P(g̃(`) ≤ z2).
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2.1 Corollaries

Dependence measures and properties are interrelated. Widely used measures such as Kendall’s tau
and Spearman’s rho (Nelsen, 2007), take into account the concordance. Based on Theorem 2.2, we
establish that for hidden units these coefficients are equal to zero.
Corollary 2.1. In Bayesian neural networks under assumptions of Theorem 2.2, Kendall’s tau and
Spearman’s rho computed for hidden units are equal to zero.

The following dependence condition of hidden units is defined by Vladimirova et al. (2021) in order to
establish the Weibull-tail property of hidden units. Random variables X1, . . . , XN satisfy the positive
dependence (PD) condition if the following inequalities hold for all z ∈ R and some constant C > 0:

P (X1 ≥ 0, . . . , XN−1 ≥ 0|XN ≥ z) ≥ C (right tail),
P (X1 ≤ 0, . . . , XN−1 ≤ 0|XN ≤ z) ≥ C (left tail).

The proof of Theorem 2.2 can be adapted to prove the following property for hidden units, originally
proved in Vladimirova et al. (2021).
Corollary 2.2 (Vladimirova et al., 2021). Let X1, . . . , XN be some possibly dependent random
variables and W1, . . . ,WN be symmetric, mutually independent and independent from X1, . . . , XN ,
then random variables X1W1, . . . , XNWN satisfy the PD condition.

3 Experiments

We have built neural networks of L = 2, 3, 4 hidden layers, with H = 2, 5, 10 hidden units on
each layer. We used a fixed input x of size 104, which can be thought of as an image of dimension
100× 100. This input was sampled once for all with standard Gaussian entries. In order to obtain
samples from the prior distribution of the neural network units, we have sampled the weights from
independent centered Gaussians from which units were obtained by forward evaluation with the ReLU
non-linearity. This process was iterated n = 105 times. We propagated the priors and calculated
values of ∆(L), defined in Equation (2), for z1, z2 on a grid (−1.0, 1.0)× (−1.0, 1.0). The results
are illustrated on Figure 1. All subplots are appeared to be divided into four quadrants of negative
and positive values, confirming Theorem 2.2: ∆(L) is positive when z1 and z2 are of the same sign,
and ∆(L) is negative otherwise.

The increase of the number of hidden units H leads to less dependence between hidden units
as the obtained values of ∆(L) are smaller. Moreover, the center of the plot takes values closer to
zero than the corners. The ∆(L) values are more spread out and less peaked. The increase of the
depth L leads to the opposite result when the corners become closer to zero than the center while the
∆(L) values become more peaked around zero.

4 Discussion

We described analytically and empirically the dependence between hidden units in Bayesian neural
networks. We proved that Kendall’s tau and Spearman’s rho are equal to zero. These results help to
understand better the influence of changing the width and depth in Bayesian neural networks.

Representation learning. Aitchison (2020) studied the prior over representations in finite and
infinite Bayesian neural networks. The narrower, deeper networks offer more flexibility because the
covariance of the outputs gradually disappears as network size increases. The results are obtained by
considering the variability in the top-layer kernel induced by the prior over a finite neural network.
Our empirical results show that such deep narrow neural networks keep hidden units highly dependent
in the center. Therefore, there might be a connection between the prior over representations and
highly-peaked dependence between units.

Width-depth trade-off. From a deep Gaussian process perspective, Pleiss and Cunningham (2021)
argue that width becomes harmful to model fit and performance as the posterior becomes less
data-dependent with width. Empirically, there is a sweet spot in width for convolutional neural
networks, depending on the dataset. The increase of width beyond this sweet spot degrades the
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performance. The tail analysis demonstrates that width and depth have opposite effects: depth
accentuates a model’s non-Gaussianity, while width makes models increasingly Gaussian. Indeed,
it was proved that Bayesian neural network units are heavier-tailed with depth (Vladimirova et al.,
2019; Zavatone-Veth and Pehlevan, 2021; Noci et al., 2021; Vladimirova et al., 2021). So the increase
of width might make the resulting units distributions more Gaussian in the center.
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A Bayesian neural network properties

A.1 Covariance

Further, we provide the proof of the following theorem that refines the non-negative covariance
theorem from Vladimirova et al. (2019).
Theorem 2.1. Consider a Bayesian neural network as described in Equation (1) with ReLU activation
function. Assume that weights w(`) are centered and independent from units h(`−1). If weights
are uncorrelated, then any pre-activations of the same layer ` are uncorrelated.
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Proof. Consider first hidden layer distinct pre-activations g(1) = W (1)T
h(0) and g̃(1) = W̃

(1)T

h(0)

as described in Equation (1). Since h(0) is a deterministic vector, the covariance between pre-
activations is of the same sign as the covariance between the weights:

Cov
[
W (1)T

h(0), W̃
(1)T

h(0)

]
=

H1∑
i=1

H1∑
j=1

(
E
[
W

(1)
i W̃

(1)
j

]
− E

[
W

(1)
i

]
E
[
W̃

(1)
j

])
h

(0)
i h

(0)
j .

If the weights are uncorrelated, then the units are uncorrelated, therefore, Cov
[
g(1), g̃(1)

]
= 0.

Consider the case where ` ≥ 2. Let X ∈ RH`−1 be outputs of hidden layer `− 1, W ∈ RH`−1 be
weights that follow some prior distribution, W̃ ∈ RH`−1 be an independent copy of W . Two distinct
units of layer ` can be written as g(`) = W TX and g̃(`) = W̃

T
X . Then, the covariance between

pre-activations g(`) and g̃(`) can be expressed as

Cov
[
g(`), g̃(`)

]
=

H`−1∑
i=1

H`−1∑
j=1

(
E[WiW̃j ]E [XiXj ]− E [Wi]E[W̃j ]E [Xi]E [Xj ]

)
.

Since the weights are uncorrelated, we have

Cov
[
g(`), g̃(`)

]
=

H`−1∑
i=1

H`−1∑
j=1

E [Wi]E[W̃j ] (E [XiXj ]− E [Xi]E [Xj ]) .

If E[Wi] = 0 for all i = 1, . . . ,H`−1, then Cov
[
g(`), g̃(`)

]
= 0.

A.2 Dependence

We provide an auxiliary lemma that we will further use for the dependence theorem proof.

Lemma A.1. Let Y be a random variable on R and ξ1, ξ2 : R→ R be monotonic functions. Then
Cov(ξ1(Y ), ξ2(Y )) ≥ 0 if ξ1 and ξ2 have the same monotonicity (are both non-increasing or both
non-decreasing), and Cov(ξ1(Y ), ξ2(Y )) ≤ 0 otherwise.

Proof. Let Y1 be an independent copy of Y . Let us consider the following expectation:

E [(ξ1(Y )− ξ1(Y1)) (ξ2(Y )− ξ2(Y1))] =

E [ξ1(Y )ξ2(Y )]− E [ξ1(Y )ξ2(Y1)]− E [ξ1(Y1)ξ2(Y )] + E [ξ1(Y1)ξ2(Y1)] .

The independence of Y and Y1 yields E [ξ1(Y )ξ2(Y1)] = E [ξ1(Y )]E [ξ2(Y1)]. Since Y and Y1 are
identically distributed, then we get

E [(ξ1(Y )− ξ1(Y1)) (ξ2(Y )− ξ2(Y1))] = 2Cov [ξ1(Y ), ξ2(Y )] .

If ξ1 and ξ2 are both increasing or both decreasing, then, for all x, y ∈ R,

(ξ1(x)− ξ1(y))(ξ2(x)− ξ2(y)) ≥ 0.

Otherwise, for all x, y ∈ R, we have

(ξ1(x)− ξ1(y))(ξ2(x)− ξ2(y)) ≤ 0.

Taking the expectation leads to the conclusion.

Lemma A.2. Consider a Bayesian neural network as described in Equation (1) with some activation
function. Let elements of weight vector W (`) follow some zero-center elliptical (possibly different
and possibly dependent) distributions, and weight vectors be independent for distinct units of the
following layer. If ` = 1, then ∆(`)(z1, z2) = 0 for all z1, z2. If ` ≥ 2, then ∆(`)(z1, z2) ≥ 0 if
z1z2 ≥ 0, and ∆(`)(z1, z2) ≤ 0 otherwise.
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Proof. The case where ` = 1 trivially holds as pre-activations are independent for independent
weights.

Consider the case where ` ≥ 2. Let X ∈ RH`−1 be outputs of hidden layer `− 1, W ∈ RH`−1 be
weights that follow some prior distribution, and W̃ ∈ RH`−1 be an independent copy of W . Since
g(`) and g̃(`) are two distinct units of layer `, they can be written as g(`) = W TX and g̃(`) = W̃

T
X ,

then

P
(
g(`) ≥ z1, g̃

(`) ≥ z2

)
= P

(
W TX ≥ z1, W̃

T
X ≥ z2

)
= E

[
I
(
W TX ≥ z1, W̃

T
X ≥ z2

)]
= EX

[
EW

[
I
(
W TX ≥ z1, W̃

T
X ≥ z2

)] ∣∣∣X]
= EX

[
PW

(
W TX ≥ z1, W̃

T
X ≥ z2

∣∣∣X)] .
Since the weights W and W̃ of different hidden units are independent, pre-activations are indepen-
dent conditionally on X . Therefore, we can express the conditional joint probability as a product of
conditional probabilities:

PW

(
W TX ≥ z1, W̃

T
X ≥ z2

∣∣∣X) = PW

(
W TX ≥ z1

∣∣∣X)PW

(
W̃

T
X ≥ z2

∣∣∣X) .
Weights W and W̃ are identically distributed, so the conditional probabilities differ only by the
lower bound values z1 and z2. Therefore, we get

P
(
g(`) ≥ z1, g̃

(`) ≥ z2

)
= EX

[
PW

(
W TX ≥ z1

∣∣∣X)PW

(
W TX ≥ z2

∣∣∣X)] . (3)

Now consider the product of probabilities

P
(
g(`) ≥ z1

)
P
(
g̃(`) ≥ z2

)
= P

(
W TX ≥ z1

)
P
(
W̃

T
X ≥ z2

)
= P

(
W TX ≥ z1

)
P
(
W TX ≥ z2

)
= EX

[
PW

(
W TX ≥ z1

∣∣∣X)]EX

[
PW

(
W TX ≥ z2

∣∣∣X)] . (4)

Then, by combining Equations (3) and (4), at the `-th layer we get

∆(z1, z2) = Cov
[
PW

(
W TX ≥ z1

∣∣∣X) ,PW

(
W TX ≥ z2

∣∣∣X)] .
Since W follows a centered elliptical distribution, then for some positive-definite matrix Σ and some
scalar function ψ the density function has the form f(w) = ψ(wTΣ−1w) (Cambanis et al., 1981).

Consider the case when z 6= 0. From ellipticity we have

PW

(
W TX ≥ z

∣∣∣X) =

∫
I
[
wTX ≥ z

]
ψ
(
wTΣ−1w

)
dw

=

∫
I
[
wT X

‖X‖Σ
≥ z

‖X‖Σ

]
ψ
(
wTΣ−1w

)
dw.

Introduce the change of variables v = QT
XΣ−1/2w for some rotation (orthogonal) matrix QX (which

satisfies Q−1
X = QT

X ) such that Q−1
X Σ1/2 X

‖X‖Σ equals the first basis vector e1. Since det(QX) = 1

is independent of X , this shows that

PW

(
W TX ≥ z

∣∣∣X) =

∫
I
[
vTe1 ≥

z

‖X‖Σ

]
ψ
(
vTv

)
det(Σ1/2)dv,

thus establishing that function X 7→ PW

(
W TX ≥ z

∣∣∣X) is actually a function of Y = ‖X‖Σ, a

one-dimensional random variable, i.e. for Y > 0 and for some function ξz , PW

(
W TX ≥ z

∣∣∣X) =

ξz (Y ).
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Determine ξz(0) = I[z ≤ 0]. Then,

∆(`)(z1, z2) = Cov [ξz1
(Y ), ξz2

(Y )] .

If z > 0, then Y → ξz(Y ) is non-decreasing as I[z ≤ 0] = 0 ≤ Ψ
(
z
Y

)
. Similarly, if z < 0, then

Y → ξz(Y ) is non-increasing.

Therefore, ξz1
and ξz2

have the same monotonicity if z1 and z2 are of the same sign. According to
Lemma A.1, in this case ∆(z1, z2) = Cov(ξz1

(Y ), ξz2
(Y )) ≥ 0. If z1 and z2 are of different signs,

then ∆(z1, z2) = Cov(ξz1
(Y ), ξz2

(Y )) ≤ 0.

If z = 0, then ξ0(Y ) ≤ 1 for Y > 0 and ξ0(0) = 1. Thus, since at the smallest value the function
has the maximum, ξ0(Y ) is non-increasing, and Lemma A.1 can also be applied to the case when z1

or z2 is zero.

Lemma A.3. Consider a Bayesian neural network as described in Equation (1) with some activation
function φ. Let elements of weight vector W (`) follow some zero-center elliptical (possibly different
and possibly dependent) distributions, and weight vectors be independent for distinct units of the
following layer. The activation function satisfies P

(
φ(g(`)) = 0

)
= 0 at layer ` iff ∆(`)(0, z) = 0

for any z.

Proof. With previous notations, we set z1 = 0 and z2 = z. Note that we could invert the roles of z1

and z2 without loss of generality.

Let P(X = 0) = p, then P(X 6= 0) = 1−p. Notice that PW

(
W TX ≥ z

∣∣∣X = 0
)

= I[z ≤ 0], and,

in particular, if z = 0, PW

(
W TX ≥ 0

∣∣∣X = 0
)

= 1. Moreover, PW

(
W TX ≥ 0

∣∣∣X 6= 0
)

= 1/2

due to ellipticity.

Therefore, for the case when z = 0 we have

EX

[
PW

(
W TX ≥ 0

∣∣∣X)] = EX

[
PW

(
W TX ≥ 0

∣∣∣X = 0
)]
p

+ EX

[
PW

(
W TX ≥ 0

∣∣∣X 6= 0
)]

(1− p)

= p+
1− p

2
=
p+ 1

2
,

EX

[
P2
W

(
W TX ≥ 0

∣∣∣X)] = EX

[
P2
W

(
W TX ≥ 0

∣∣∣X = 0
)]
p

+ EX

[
P2
W

(
W TX ≥ 0

∣∣∣X 6= 0
)]

(1− p)

= p+
1− p

4
=

3p+ 1

4
.

Thus, we get

∆(`)(0, 0) =
3p+ 1

4
− (p+ 1)2

4
=
p(1− p)

4
≥ 0.

We see that ∆(`)(0, 0) = 0 iff p = P(X = 0) = 0 or 1− p = P(X 6= 0) = 0.

Now let us consider more general case, where z 6= 0:

EX

[
PW

(
W TX ≥ z

∣∣∣X)] = EX

[
PW

(
W TX ≥ z

∣∣∣X = 0
)]
p

+ EX

[
PW

(
W TX ≥ z

∣∣∣X 6= 0
)]

(1− p)

= p I[z ≤ 0] + (1− p)EX

[
PW

(
W TX ≥ z

∣∣∣X 6= 0
)]
,
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EX

[
PW

(
W TX ≥ 0

∣∣∣X)PW

(
W TX ≥ z

∣∣∣X)]
= EX

[
PW

(
W TX ≥ 0

∣∣∣X = 0
)
PW

(
W TX ≥ z

∣∣∣X = 0
)]
p

+ EX

[
PW

(
W TX ≥ 0

∣∣∣X 6= 0
)
PW

(
W TX ≥ z

∣∣∣X 6= 0
)]

(1− p)

= p I[z ≤ 0] +
1− p

2
EX

[
PW

(
W TX ≥ z

∣∣∣X 6= 0
)]
.

Further,

∆(`)(0, z) = p I[z ≤ 0] +
1− p

2
EX

[
PW

(
W TX ≥ z

∣∣∣X 6= 0
)]

− p+ 1

2

(
p I[z ≤ 0] + (1− p)EX

[
PW

(
W TX ≥ z

∣∣∣X 6= 0
)])

=
p(1− p)

2
I[z ≤ 0]− p(1− p)

2
EX

[
PW

(
W TX ≥ z

∣∣∣X 6= 0
)]
.

If z > 0, then ∆(`)(0, z) = −p(1−p)
2 EX

[
PW

(
W TX ≥ z

∣∣∣X 6= 0
)]
≤ 0.

If z < 0, then ∆(`)(0, z) = p(1−p)
2

(
1− EX

[
PW

(
W TX ≥ z

∣∣∣X 6= 0
)])

≥ 0, as

EX

[
PW

(
W TX ≥ z

∣∣∣X)] ≤ 1.

Notice that ∆(`)(0, z) = 0 iff p = 0 or 1− p = 0 for any z.

The case when p = 1 means that X = ϕ
(
g(`)

)
= 0 for any g(`). It cannot be the case for an

activation function, thus, we get the statement of the lemma.

A.3 Corollaries

Corollary 2.1 requires a generalization of Theorem 2.2 to sums and differences of pre-activations.
Let ∆+

2 and ∆−2 be defined as

∆+
2 (z1, z2) := P(g

(`)
1 + g

(`)
2 ≥ z1, g̃

(`)
1 + g̃

(`)
2 ≥ z2)− P(g

(`)
1 + g

(`)
2 ≥ z1)P(g̃

(`)
2 + g̃

(`)
2 ≥ z2),

(5)

∆−2 (z1, z2) := P(g
(`)
1 − g

(`)
2 ≥ z1, g̃

(`)
1 − g̃

(`)
2 ≥ z2)− P(g

(`)
1 − g

(`)
2 ≥ z1)P(g̃

(`)
2 − g̃

(`)
2 ≥ z2),

(6)

where g(`)
1 , g(`)

2 are independent copies of hidden unit g(`), and g̃(`)
1 , g̃(`)

2 are independent copies of
hidden unit g̃(`).
Theorem A.1. Under the assumptions of Theorem 2.2, the same result holds for ∆+

2 and ∆−2 .

Proof. We say g(`) = W TX , where X ∈ RH`−1 be outputs of hidden layer ` − 1, W ∈ RH`−1

be weights that follow some prior distribution, independent of X . Similarly, g̃(`) = W̃
T
X , where

W̃ ∈ RH`−1 be independent copy of W . We can express the joint probability in ∆+
2 as

P
(
g

(`)
1 + g

(`)
2 ≥ z1, g̃

(`)
1 + g̃

(`)
2 ≥ z2

)
= P

(
W T

1X1 + W T
2X2 ≥ z1, W̃

T
1X1 + W̃

T
2X2 ≥ z2

)
.

Following the proof of Theorem 2.2, we have

P
(
g

(`)
1 + g

(`)
2 ≥ z1, g̃

(`)
1 + g̃

(`)
2 ≥ z2

)
= P

(
W T

1x1 + W T
2x2 ≥ z1, W̃

T
1x1 + W̃

T
2x2 ≥ z2

∣∣∣X1 = x1,X2 = x2

)
.

Let us denote W 0 = [W 1,W 2] ∈ R2H`−1 , W̃ 0 = [W̃ 1, W̃ 2] ∈ R2H`−1 , X0 = [X1,X2] ∈
R2H`−1 , and x0 = [x1,x2] ∈ R2H`−1 . We obtain W 0 and W̃ 0 are vectors of elliptical distributions
independent of X0. Now, we can rewrite

P
(
g

(`)
1 + g

(`)
2 ≥ z1, g̃

(`)
1 + g̃

(`)
2 ≥ z2

)
= P

(
W T

0x0 ≥ z1, W̃
T
0x0 ≥ z2

∣∣∣X0 = x0

)
= P

(
W T

0x0 ≥ z1

∣∣∣X0 = x0

)
P
(
W̃

T
0x0 ≥ z2

∣∣∣X0 = x0

)
.
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The same way we get an equation for a product of probabilities

P
(
g

(`)
1 + g

(`)
2 ≥ z1

)
P
(
g̃

(`)
1 + g̃

(`)
2 ≥ z2

)
= P

(
W T

0x0 ≥ z1

)
P
(
W̃

T
0x0 ≥ z2

)
.

The rest of the proof is exactly the same as in Theorem 2.2.

Notice that if W is elliptical, then −W is elliptical. Then, for the case of ∆−2 , we denote W 0 =

[W 1,−W 2] and W̃ 0 = [W̃ 1,−W̃ 2], which are also elliptical vectors independent of X0. Similarly
as for ∆+

2 , we obtain the statement for ∆−2 .

Corollary 2.1. In Bayesian neural networks under assumptions of Theorem 2.2, Kendall’s tau and
Spearman’s rho computed for hidden units are equal to zero.

Proof. Consider random variables (X,Y ) with some joint distribution. Let (X1, Y1) and (X2, Y2)
be independent and identically distributed random copies of (X,Y ). From Nelsen (2007), Kendall’s
tau τ can be expressed as

τ = τX,Y = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0] .

Let X and Y be different hidden units from Bayesian neural networks satisfying the assumptions in
the statement.

Notice that P [(X1 −X2)(Y1 − Y2)Y > 0] = P [X1 −X2 > 0, Y1 − Y2 > 0] +
P [X1 −X2 < 0, Y1 − Y2 < 0]. From Theorem A.1, we have ∆(0, 0) = 0, so
P [X1 −X2 > 0, Y1 − Y2 > 0] = P [X1 −X2 > 0]P [Y1 − Y2 > 0]. Since X1 and X2 are
independent copies of X , P [X1 > X2] = 1/2 Similarly, combining Theorem A.1 with Remark 2.1,
P [X1 −X2 < 0, Y1 − Y2 < 0] = P [X1 −X2 < 0]P [Y1 − Y2 < 0] and P [X1 < X2] = 1/2.
Therefore, τ = 0.

Spearman’s rho ρ is defined as

ρ = ρX,Y = 3 (P [(X1 −X2)(Y1 − Y3) > 0]− P [(X1 −X2)(Y1 − Y3) < 0]) ,

where (X1, Y1), (X2, Y2) and (X3, Y3) are independent and identically distributed random copies
of (X,Y ) (Nelsen, 2007). The proof for ρ is identical.
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