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Abstract

Reinforcement Learning (RL) based solutions are being adopted in a variety of
domains including robotics, health care and industrial automation. Most focus is
given to when these solutions work well, but they fail when presented with out of
distribution inputs. RL policies share the same faults as most machine learning
models. Out of distribution detection for RL is generally not well covered in the
literature, and there is a lack of benchmarks for this task. In this work we propose
a benchmark to evaluate OOD detection methods in a Reinforcement Learning
setting, by modifying the physical parameters of non-visual standard environments
or corrupting the state observation for visual environments. We discuss ways to
generate custom RL environments that can produce OOD data, and evaluate three
uncertainty methods for the OOD detection task. Our results show that ensemble
methods have the best OOD detection performance with a lower standard deviation
across multiple environments.

1 Introduction

Reinforcement learning (RL) is one of the paradigms of machine learning. It involves training an
agent to solve tasks by interacting with the environment and learning from its experience. In the
recent years, RL has been successful in a variety of domains including robotics [12], game playing
[27] and even agricultural applications [6]. Researchers are using it on a daily basis to make important
decisions. The performance of trained agents is highly dependent on the experience or data seen
during training. It is usually assumed that the test data follows the same distribution as the training
data. However, this assumption does not hold true in many real world applications. The samples or
observations that do not conform to the underlying distribution of the training data are referred to as
out-of-distribution (OOD) samples.

Recent RL algorithms are making use of deep neural networks which are known to be sensitive to
OOD data [9]. This can result in incorrect decisions which in turn can have significant costs. When
developing new algorithms, researchers usually focus on the performance of the models calculated by
metrics like accuracy and mean squared error and often ignore to report the models’ uncertainty in its
predictions. The uncertainty of the model can be directly associated with the trust in its predictions.
Predictions with higher uncertainty can be rejected or can be an indication for the need of human
processing instead of automation.

This work focuses on detecting OOD samples in the context of reinforcement learning policies.
Several approaches have come up in the recent years to identify OOD data. But, most of them focus
on detecting OOD samples for image classification problems. This is due to the fact that the other
domains suffer from the availability of OOD or adversarial examples. This work aims to extend the
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detection of OOD data to deep reinforcement learning and provide a benchmark for future researchers
to test their methods.

Our contributions are a benchmark for OOD detection in reinforcement learning, by creating OOD
environments that have corrupted observed states or modified physical parameters, which enable the
evaluation of OOD detection methods in reinforcement learning. We provide initial results using
Dropout, DropConnect, and ensembles, finding that ensembles work best for this task.

2 Related Work

To the best of our knowledge, there is currently no benchmark available for evaluating out-of-
distribution detection in reinforcement learning. However, there has been a surge in interest in
this field in the recent years. In this section, we discuss the prior work that has been done for
out-of-distribution detection in general. We also discuss the research that has been done for out-of-
distribution detection in a reinforcement learning setting.

Various available methods for out-of-distribution or anomaly detection can be categorized based on the
availability of anomaly labels into supervised, unsupervised and semi-supervised techniques [4] . The
supervised methods used uncertainty measures based on the gradient of the negative log-likelihood
[23], Mahalanobis distance from different layers [17], Long short-term memory (LSTM) based
binary detectors[5]. Some of best semi-supervised methods used Likelihood ratio [25], Probably
Approximately Correct (PAC) based algorithm [19] and a two-head Convolutional Neural Network
(CNN) [29] for anomaly detection.

Unsupervised techniques include using predicted softmax probability [10], Temperature scaling [18],
and Generative Adversarial Network (GAN) based architecture [16]. Overall, supervised methods
tend to perform better than the other methods as ground-truths are available. However, having the
examples and labels for a full spectrum of anomalies may not be possible in all the cases and this
might result in overfitting. Unsupervised methods are flexible and can be applied to a variety of
domains as they don’t rely on the labels and anomalous data. However, they are highly sensitive to
noise. Semi-supervised methods have the flexibility of unlabelled data along with the accuracy from
the labelled data. However, they tend to overfit in unseen anomalous situations. One of the challenges
in anomaly detection in deep learning is to define the boundary between normal and anomalous
examples with complex feature spaces.

Uncertainty estimation provides good results for Independent and Identically Distributed (IID)
samples. However, most of these methods tend to fail when there is even a mild change in the
dataset distribution. [24] focuses on understanding the quality of uncertainty estimates in the case
of distributional shift along with IID setting. A set of probabilistic deep learning methods like
Maximum softmax probability, Monte-Carlo Dropout [8], Ensembles [14], Temperature Scaling,
Stochastic Variational Bayesian Inference (SVI) [28] were evaluated on images, text and MNIST
data. In addition to the classification accuracy, metrics like Brier score [2], Negative Log-Likelihood
and Expected Calibration Error (ECE) are calculated. For MNIST, the accuracy of all the models
degrade as the shift in the data increases. The Brier score differentiates the evaluated methods more
clearly. All methods have a better Brier score than the state-of-the-art temperature scaling method.
Even though SVI achieves the worst accuracy, it outperforms all the other methods when the data
shift is significant. Most of the methods show high confidence in their predictions on entirely OOD
data. CIFAR-10 [13] and ImageNet [7] datasets were used to study the predictive uncertainty on
image data. Ensembles had the best performance across most of the metrics. The performance of all
the methods follows the same order in both the image datasets. However, the order is not the same as
SVI performs worse than vanilla method on the shifted datasets. The 20newsgroups [15] dataset is
used to evaluate the predictive uncertainty on text data. Similar to the performance on image data,
ensembles outperform all the other methods in terms of accuracy and uncertainty estimation. The
uncertainty does not change significantly with temperature scaling even for significantly shifted data.
On fully OOD data, vanilla method had better performance than dropout and SVI methods. Overall,
ensembles outperformed all the other methods in all the tasks with a better trade-off between accuracy
and confidence.

While [4] and [24] provide a large-scale comparison of the OOD methods and an extensive benchmark
for evaluating uncertainty estimates respectively, all the discussed methods were evaluated on image
or text data. Recently, [26] presented an OOD detection method applicable for reinforcement learning
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problems. The solution involves modeling the OOD detection problem as a classification problem
with two classes i.e. one for in-distribution data and the other for OOD data. The authors propose a
framework called UBOOD [26] for uncertainty-based OOD detection. It is based on the principle that
the epistemic uncertainty is lower for in-distribution (observed during training) samples than for the
OOD samples. Two environments were developed for evaluating the proposed framework. One of the
environments is a simple grid-based world with a discrete state-space and the other has a continuous
state-space based on OpenAI’s Lunar lander. Three different versions of the proposed framework have
been evaluated based on their F1 scores, with each version based on Monte-Carlo Concrete Dropout
network, Bootstrap network, Bootstrap-prior network respectively. The UBOOD framework with
Bootstrap-prior network performs the best in detecting the OOD samples on both the environments. It
was observed that the F1 score is better for the environment which differs the most from the training
environment. Similarly, [20] proposes a risk sensitive reinforcement learning approach that can be
combined with a RL policy to make it sensitive to novel data. This work specifically focusses on
dynamic obstacle avoidance problem in novel scenarios. The agent can simultaneously observe its
goal and the position and velocity of the obstacle. The probabilities of collision for each motion are
calculated by LSTM networks. A distribution of the predictions are calculated by MC-Dropout and
Bootstrapping. Predictions are used to calculate the mean and variance for each motion primitive.
The time to reach the goal after every motion primitive is also estimated in parallel using a simple
model. At each time step, the motion primitive with the least collision probability is selected and the
process is repeated. This model is evaluated against an uncertainty unaware model. The results show
that the uncertainty aware model is more robust to novel obstacles. However, the uncertainty values
in novel scenarios did not increase significantly.

While [26] and [20] explore the implementation of out-of-distribution detection in reinforcement
learning tasks, the authors are forced to create their own environments for experiments. This is due
to the lack of available benchmark for out-of-distribution or anomaly detection in reinforcement
learning. This highlights the need and importance of benchmark tasks for pushing the research on
OOD detection in RL even further.

3 Out-of-Distribution Detection and Uncertainty

Deep learning is being used to solve complex problems across a variety of domains including
autonomous vehicles, industrial automation, health care and surveillance. It has shown to perform as
good as or even better than humans in some of these tasks. However, most of the learning methods
assume the test data to be from the same distribution as of the training data. This assumption does not
hold true in many real world applications. The samples that deviate from the underlying distribution
of the training data are referred to as out-of-distribution (OOD) samples or anomalies. Deep learning
methods in general are known to be sensitive to OOD data and lead to incorrect results.

An example specific to reinforcement learning is the autonomous control of industrial robots. These
robots are typically deployed in a human-robot collaborative environment. In the absence of an OOD
detection mechanism, any new work setting which has not been seen during training can make the
robot to take actions that could be fatal to the human and other resources that are in its vicinity.
This makes out-of-distribution detection extremely important for the safety of the humans and the
environment in which the models are deployed.

Out-of-distribution detection corresponds to the task of identifying samples or observations where
the model is uncertain about its output. Different methods used to estimate uncertainty in this work
are Monte Carlo Dropout [8], Monte Carlo DropConnect [22] and Ensembles [14]. Dropout is a
regularization technique in neural networks. During training, some of the activations are randomly
dropped out. This has proven to be a simple yet effective method to avoid overfitting. Monte Carlo
Dropout is the method of enabling dropout at inference which has proven to be an approximation of
the predictive posterior distribution. If the same input is applied to the network multiple times, an
empirical distribution can be estimated and the parameters like mean and variance can be obtained.
This variance serves as a measure of the model’s uncertainty. The variance is expected to be low in
the input areas where there was enough training data and can be high where there was no or little
training data.

DropConnect [22] is a variation of Dropout where the weights are dropped out instead of the
activations of a layer. It has also proven to produce an approximation of the predictive posterior

3



(a) Standard network (b) Network after applying dropout (c) Network after applying dropconnect

Figure 1: Figure showing the effect of using dropout layers in the network [11]

Figure 2: Training an Ensemble network [1]

distribution. While implementing dropout is simple, implementation of DropConnect requires new
layers that use DropConnect layers internally. MC DropConnect is sometimes seen to perform
better than MC Dropout in both learning the task and the uncertainty quantification. Ensemble
corresponds to training multiple instances of the same model but randomly drawn initial weights and
then combining the predictions. They have better prediction performance than any single member
model. They have also shown to exhibit excellent uncertainty estimation properties.For classification
tasks, the entropy can be used as a measure of uncertainty. For regression tasks, the standard deviation
of the output can be used.

4 Out of Distribution Detection in Deep RL Benchmark

To generate custom versions of the cartpole environment, physical variables like gravity, mass of the
cart, mass of the pole, length of the pole and the magnitude of the force to be applied to the cart are
assigned new values. A grid of values are chosen in multiples of the default values for each parameter.
For example, the force magnitude has a default value of 10. The custom versions have values ranging
from 1.0 to 100.0 as a multiple (x/10, x/9, x/8,..., x/2, 2x, 3x,...,10x) of the default value. Custom
versions of the pendulum environment are generated in the same way as the cartpole environment by
assigning new values of physical variables like gravity, mass of the pole, length of the pole along with
the speed and torque to be applied. Unlike the physical environments like cartpole and pendulum,
custom versions of the pong environment are generated by corrupting the observations (images).
For this, we have used the imagecorruptions [21] package, that supports various corruption types
including gaussian noise, impulse noise, motion blur, and pixelate. We can also adjust the severity of
the corruption using this package.

We present all the parameters values for the custom environments that should make them out of
distribution. Table 1 lists the physical variables, their default values and the new values that are
assigned to generate custom versions of for all environments.

Unlike the above mentioned physics based environments like cartpole and pendulum, custom versions
of the pong environment are generated by corrupting the observations (images). Table 1 lists the
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Parameter Default value OOD Environment - Parameter Values

Cartpole - Physical Parameters OOD-Cartpole
Gravity 9.8 0.98, 1.09, 1.23, 1.4, 1.63, 1.96, 2.45, 3.27, 4.9,

19.6, 29.4, 39.2, 49.0, 58.8, 68.6, 78.4, 88.2, 98.0
Mass of the cart 1.0 0.1, 0.1111, 0.125, 0.1429, 0.1667, 0.2, 0.25,

0.3333, 0.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0,
10.0

Length of the pole 0.5 0.05, 0.0556, 0.0625, 0.0714, 0.0833, 0.1, 0.125,
0.1667, 0.25, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5,
5.0

Mass of the pole 0.1 0.01, 0.0111, 0.0125, 0.0143, 0.0167, 0.02, 0.025,
0.0333, 0.05, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1.0

Force magnitude 10.0 1.0, 1.1111, 1.25, 1.4286, 1.6667, 2.0, 2.5, 3.3333,
5.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0,
100.0

Pendulum - Physical Parameters OOD-Pendulum
Gravity 10.0 0.5, 1.0, 2.0, 5.0, 20.0, 50.0, 100.0, 200.0
Mass of the pole 1.0 0.05, 0.1, 0.2, 0.5, 2.0, 5.0, 10.0, 20.0
Length of the pole 1.0 0.05, 0.1, 0.2, 0.5, 2.0, 5.0, 10.0, 20.0
Max speed 8.0 0.4, 0.8, 1.6, 4.0, 16.0, 40.0, 80.0, 160.0
Max torque 2.0 0.1, 0.2, 0.4, 1.0, 4.0, 10.0, 20.0, 40.0

Pong - State Observation Corruptions OOD-Pong
Gaussian noise σ 0.0 0.08, 0.12, 0.18, 0.26, 0.38
Impulse noise p 0.0 0.03, 0.06, 0.09, 0.17, 0.27
Motion blur ρ, σ (0, 0) (10, 3), (15, 5), (15, 8), (15, 12), (20, 15)
Pixelate downscale factor f 1.0 0.6, 0.5, 0.4, 0.3, 0.25

Table 1: A list of physical and image corruption parameters for all custom environments along with
their default values (used for training) and new values used for out of distribution detection evaluation.

corruption types and their parameters used to generate custom versions of the pong environment. The
appendix contains details of the image/state corruptions and their formulations.

5 Experimental Setup

In this section, various tasks that were used to evaluate the performance of out-of-distribution
detection methods are described. As real world applications of reinforcement learning are in both
visual and non-visual based environments, a combination of tasks that cover these aspects are chosen.
These tasks include cartpole, pendulum and pong. Cartpole is a non-visual physics based environment
and has a discrete action space. Pendulum is also a non-visual physics based environment but with
a continuous action space. Pong is a visual based environment with a discrete action space. These
environments have been taken from OpenAI Gym suite [3] which is a framework for the development
and comparison of reinforcement learning algorithms.

The performance of the different out-of-distribution detection methods is evaluated in the following
way.

1. A task is trained using a deep RL algorithm.

2. The trained model is evaluated on multiple custom versions of the environment.

3. The custom environment versions where the trained model fails are identified.

4. Different out-of-distribution detection methods are evaluated on these custom environments.

5. The above steps are repeated for different tasks.
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(a) Cartpole (b) Pendulum (c) Pong

Figure 3: Figures showing the different environments/tasks used.

Task Algorithm OOD detection method

Cartpole DQN MC Dropout, MC DropConnect, Ensemble
Pendulum DDPG MC Dropout, MC DropConnect, Ensemble
Pong DQN MC DropConnect, Ensemble

Table 2: Combinations of tasks, RL algorithms and OOD detection methods evaluated.

6 Experimental Results and Analysis

In this section, we analyze the OOD detection performance of various methods on cartpole, pendulum
and the pong environments.

Table 3 lists the different OOD methods along with their best AUC scores on the specific custom
versions of the cartpole environment. MC Dropout achieves its best AUC score of 0.78 on the custom
version having the force parameter of 2.5. On the other hand, MC DropConnect achieves its best
AUC score of 0.992 on the custom version having the gravity of 78.4. However, the best overall
AUC score of 0.993 on the custom cartpole environments is achieved by the ensemble method on
the version with the length of the pole as 2. Apart from the best AUC scores, the lowest standard
deviation of the AUC scores across trials is also achieved by the ensemble method followed by the
MC Dropout and then the MC DropConnect which has the largest standard deviation values for the
custom cartpole environments. This shows that the Ensemble method is the best performing OOD
detection method for the cartpole environment.

Figure 4 show the mean and standard deviation of the Q values during one episode for both the
original environment and the custom version with a length of 2. As seen from the figure, the standard
deviation is almost always less than the OOD threshold for the original environment over the course
of the entire episode. However, for the custom environment, the standard deviation is more than the
OOD threshold right from the initial steps of the episode. This behavior is seen for both the actions.
This also highlights the good OOD detection performance of the ensemble method.

Table 4 lists the different OOD methods along with their best AUC scores on the specific custom
versions of the pendulum environment. MC Dropout achieves its best AUC score of 0.727 on the
custom version having the gravity of 50. On the other hand, MC DropConnect achieves its best AUC
score of 0.726 on the custom version having the length of the pole of 5. Similarly, the ensemble
method achieves its best overall AUC score of 0.619 on the custom pendulum environment having the
length of the pole as 0.1. Apart from the best AUC scores, the lowest standard deviation of the AUC
scores across trials is achieved by the ensemble method followed by the MC Dropout and then the MC
DropConnect which has the largest standard deviation values for the custom pendulum environments.
This shows that there is a trade off between the best possible performance and consistency for the
OOD detection methods. Overall, the MC Dropout method can be considered the best performing
OOD detection method for the pendulum environment with an acceptable level of reproducibility in
performance.

Figure 5 shows the progress of the action values along with their standard deviations for a duration
of one episode obtained during the best performing trail of MC Dropout model for the original
pendulum environment with gravity of 10 and the custom version with gravity of 50. It can be seen
that the standard deviation values obtained for the original pendulum environment are higher than the
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OOD detection method Parameters Best AUC score

MC Dropout Force: 2.5 0.780
MC Dropout Gravity: 49 0.759
MC Dropout Mass of the cart: 3 0.719

MC DropConnect Force: 1 0.921
MC DropConnect Gravity: 78.4 0.992
MC DropConnect Length of the pole: 2 0.987
MC DropConnect Mass of the cart: 9 0.887

Ensemble Gravity: 98 0.833
Ensemble Length of the pole: 2 0.993

Table 3: Best AUC scores achieved by MC Dropout, MC DropConnect and ensemble method on
variations of OOD-Cartpole. The overall best AUC score of each OOD method is highlighted.
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Figure 4: Comparison of Ensemble mean and standard deviation of Q values produced by DQN along
with the threshold for OOD detection for Cartpole and OOD-Cartpole length of pole set at two.

OOD threshold value especially in the middle of the episode. Similarly, the standard deviation values
obtained for the custom environment are higher than the OOD threshold value in the beginning of the
episode and also occasionally in the later part of the episode. This shows that MC Dropout is not
very efficient in distinguishing between ID and OOD observations for the pendulum environment.

Table 5 lists the different OOD methods along with their best AUC scores on the specific custom
versions of the pong environment. MC DropConnect achieves its best AUC score of 0.828 on the
custom pong environment corrupted with Gaussian noise of severity level 5. On the other hand,
the ensemble method achieves its best AUC score of 0.91 on the custom version corrupted using
motion blur with a severity of 3. When the performance of both the methods is compared based
on the corruption type, the ensemble method achieves better AUC scores than MC DropConnect
across all corruptions. The ensemble method also has lower standard deviations across trials than
MC DropConnect. This shows that the ensemble method has the best OOD detection performance
for the pong environment.
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OOD detection method Custom configuration Best AUC score

MC Dropout Gravity: 50 0.727
MC Dropout Length of the pole: 5 0.656
MC Dropout Mass of the cart: 5 0.726
MC DropConnect Gravity: 50 0.602
MC DropConnect Length of the pole: 5 0.726
MC DropConnect Mass of the cart: 5 0.715
Ensemble Length of the pole: 0.1 0.619
Ensemble Mass of the cart: 0.05 0.596

Table 4: Best AUC scores achieved by MC Dropout, MC DropConnect and ensemble method on
variations of OOD-Pendulum. The overall best AUC score of each OOD method is highlighted.
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Figure 5: Comparison of action values obtained by MC Dropout on DDPG for original pendulum
environment with gravity of 10 and the custom version with gravity of 50. The plot shows the mean
of the action value obtained using the five predictors along with the standard deviation and the best
threshold interval computed to distinguish the ID and OOD observations.

7 Conclusions and Future Work

In this work, the OOD detection performance of different uncertainty estimation methods i.e. MC
Dropout, MC DropConnect and ensemble is compared across a range of control tasks. The tasks
included two physics based environments i.e. cartpole, which has a discrete action space and
pendulum, which has a continuous action space. The OOD detection methods were also evaluated
on pong, which is a visual based environment. The difference in the performance of the trained
models between the original environment and the custom versions highlight the sensitivity of the
models to the changes in the environment. The models trained on visual based environment were,
in general, more sensitive to changes in the environment than the models trained on physics based
environments. One of the major challenges faced during training the dropout and dropconnect models
was to identify the appropriate level of dropout probability that the models can still learn to solve the
original versions of the tasks.
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Best AUC score
Custom configuration MC DropConnect Ensemble

Gaussian noise: σ = 0.18 0.699 0.647
Gaussian noise: σ = 0.26 0.749 0.735
Gaussian noise: σ = 0.38 0.828 0.831

Impulse noise: p = 0.09 0.712 0.656
Impulse noise: p = 0.17 0.775 0.769
Impulse noise: p = 0.27 0.822 0.836

Motion blur: ρ = 15, σ = 8 0.707 0.910
Motion blur: ρ = 15, σ = 12 0.682 0.861
Motion blur: ρ = 20, σ = 15 0.685 0.841

Pixelate: f = 0.4 0.606 0.823
Pixelate: f = 0.3 0.565 0.634

Table 5: Best AUC scores achieved by MC DropConnect and Ensemble methods on variations of
OOD-Pong.

Ensemble methods achieved the best OOD detection performance on cartpole and pong environments
while MC Dropout performed the best on the pendulum environment. The ensemble method also
had the lowest variation in its performance over multiple trials across all the environments. The MC
DropConnect has a good OOD detection performance across all the environments, however, it is not
consistent. This work also highlights the effect of the RL algorithm on the performance of the OOD
detection methods. The overall AUC scores obtained using DQN based models are higher than the
ones obtained by DDPG. Nonetheless, more experiments are needed to confirm this behavior.

Overall, the experiments show that MC Dropout, MC DropConnect and the ensemble method were
successful in detecting OOD observations in deep reinforcement learning. This is especially true in
the case of the visual based environments, where the trained models failed on almost all the custom
versions of the environment but were able to detect OOD observations to a large extent especially with
higher levels of corruption. Future work can be done in developing methods that not only estimate
the uncertainty but also learn from the OOD observations to create more robust models. Researchers
are also encouraged to test the OOD detection methods on more complex environments.
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A Image/State Observation Corruptions

In this section we provide details of the state observation/image corruptions that we used to make
OOD-Pong. Figure 6 makes a visual comparison of these corruptions across different parameters.

Gaussian Noise. Each pixel is added a sample drawn from a Gaussian distribution with mean zero
and standard deviation σ.

Impulse Noise. Also known as salt and pepper noise. pwh pixels in the image are randomly set to
the minimum or maximum pixel value, where p ∈ [0, 1] is the percentage of noisy pixels.

Motion Blur. A Gaussian blur kernel of size (2ρ + 1) × (2ρ + 1) and standard deviation σ is
generated, which is applied to the image at a random angle between [−π

4 ,
π
4 ] instead of being axis

aligned.

Pixelate. The input image is downscaled to size (fw, fh), and then upscaled to (w, h). This process
loses part of spatial information and the upscaling will make the image look pixelated. The parameter
f ∈ [0, 1] determines how much downscaling is performed.

Gaussian noise: 1

(a) σ = 0.08

Impulse noise: 1

(b) p = 0.03

Motion blur: 1

(c) ρ = 10σ = 3

Pixelation: 1

(d) f = 0.6
Gaussian noise: 2

(e) σ = 0.12

Impulse noise: 2

(f) p = 0.06

Motion blur: 2

(g) ρ = 15σ = 5

Pixelation: 2

(h) f = 0.5
Gaussian noise: 3

(i) σ = 0.18

Impulse noise: 3

(j) p = 0.09

Motion blur: 3

(k) ρ = 15σ = 8

Pixelation: 3

(l) f = 0.4
Gaussian noise: 4

(m) σ = 0.26

Impulse noise: 4

(n) p = 0.17

Motion blur: 4

(o) ρ = 15σ = 12

Pixelation: 4

(p) f = 0.3
Gaussian noise: 5

(q) σ = 0.38

Impulse noise: 5

(r) p = 0.27

Motion blur: 5

(s) ρ = 20σ = 15

Pixelation: 5

(t) f = 0.25

Figure 6: Sample of different image/state observation corruptions and their variations along different
severity parameters.
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B Detailed Experimental Results

In this section we provide all the experimental results for all environments, uncertainty methods, and
RL algorithms, including multiple trials.

Table 6 shows the AUC scores obtained during multiple trials on custom versions of the cartpole
environment using MC Dropout for uncertainty estimation. MC Dropout produces a mean AUC score
of around 0.71 along with a standard deviation of around 0.05 for the custom environment with a
force of 2.5. It obtains a mean AUC score of around 0.69 along with a standard deviation of 0.07
for the custom environment with a gravity of 49. Similarly it achieves a mean AUC score of around
0.7 along with a standard deviation of 0.01 for the custom environment with the mass of the pole
as 3. This shows that MC Dropout does a decent job in distinguishing between the in-distribution
and out-of-distribution observations. The low values of the standard deviation show that the OOD
detection of MC Dropout is reproducible.

Force: 2.5 Gravity: 49.0 Mass of the cart: 3.0

AUC score trial 1 0.737 0.750 0.719
AUC score trial 2 0.688 0.685 0.691
AUC score trial 3 0.652 0.606 0.703
AUC score trial 4 0.780 0.759 0.708
AUC score trial 5 0.703 0.626 0.685
Mean AUC score ± Std 0.712 ± 0.049 0.685 ± 0.069 0.701 ± 0.013

Table 6: AUC scores obtained during multiple trials of OOD detection using MC Dropout on the
custom versions of the cartpole environment along with their configurations. The mean AUC score
and the standard deviation are also highlighted for each configuration.

Table 7 shows the AUC scores obtained during multiple trials of OOD detection on custom versions of
the cartpole environment using MC DropConnect. MC DropConnect produces a mean AUC score of
around 0.79 along with a standard deviation of around 0.13 on the custom environment with changed
force of 1.0. It achieves even higher mean AUC scores of around 0.82 with standard deviation of
0.11 and 0.88 with standard deviation of around 0.09 on the custom versions with changes in gravity
and length of the pole respectively. It also achieves a mean AUC score of around 0.78 along with a
standard deviation of around 0.07 on the custom environment with mass of the pole of 9. This shows
that MC DropConnect does an excellent job in distinguishing between the ID and OOD observations.
However, the standard deviations with MC DropConnect are slightly higher than that with MC
Dropout. Overall, MC DropConnect does a better job in detecting OOD samples than MC Dropout
but its performance is not always reproducible.

Table 8 shows the AUC scores obtained during multiple trials on custom versions of the cartpole
environment using ensemble for uncertainty estimation. The ensemble method achieves a highest
mean AUC score of around 0.88 with a standard deviation of around 0.06 for the custom version with
the length of 2. It also achieves a mean AUC score of around 0.77 with a standard deviation of around
0.05 for the custom version with gravity of 98. The higher AUC scores show that the ensemble
method does an excellent job in distinguishing between the in-distribution and out-of-distribution
observations. The lower values of the standard deviation also show that the OOD detection using
ensemble method is reproducible.

Table 9 shows the AUC scores for multiple trials of OOD detection using MC Dropout method with
custom versions of the pendulum environment. MC Dropout achieves a mean AUC score of around
0.66 along with the standard deviation of 0.06 for the custom version where the gravity was increased
to 50. The method achieves a mean AUC score of 0.614 along with a standard deviation of 0.04 for
the custom environment with an increased length of 5. Similary, the method achieves a mean AUC
score of 0.684 along with a standard deviation of 0.03 for the custom environment with an increased
mass of 5. The smaller standard deviation values show that the performance of OOD detection by the
dropout method is robust and reproducible.

Table 10 shows the AUC scores for multiple trials of OOD detection using MC DropConnect method
with custom versions of the pendulum environment. MC DropConnect achieves a mean AUC score
of around 0.59 along with the standard deviation of 0.02 for the custom version where the gravity was
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Parameter Force: 1.0 Gravity: 78.4 Length of the pole: 2 Mass of the cart: 9

AUC score trial 1 0.748 0.844 0.888 0.696
AUC score trial 2 0.921 0.834 0.987 0.887
AUC score trial 3 0.906 0.758 0.822 0.745
AUC score trial 4 0.768 0.693 0.936 0.756
AUC score trial 5 0.612 0.992 0.765 0.821
Mean AUC score ± Std 0.791 ± 0.127 0.824 ± 0.112 0.880 ± 0.089 0.781 ± 0.074

Table 7: AUC scores obtained during multiple trials of OOD detection using MC DropConnect on the
custom versions of the cartpole environment along with their configurations. The mean AUC score
and the standard deviation are also highlighted for each configuration.

Parameter Gravity: 98 Length of the pole: 2

AUC score trial 1 0.756 0.862
AUC score trial 2 0.732 0.826
AUC score trial 3 0.734 0.993
AUC score trial 4 0.833 0.864
AUC score trial 5 0.803 0.870
Mean AUC score ± Std 0.772 ± 0.045 0.883 ± 0.064

Table 8: AUC scores obtained during multiple trials of OOD detection using ensemble method on the
custom versions of the cartpole environment along with their configurations. The mean AUC score
and the standard deviation are also highlighted for each configuration.

increased to 50. The method achieves a mean AUC score of 0.636 along with a standard deviation
of around 0.07 for the custom environment with an increased length of 5. Similarly, the method
achieves a mean AUC score of 0.596 along with a standard deviation of around 0.09 for the custom
environment with an increased mass of 5. The standard deviation values with MC DropConnect are
slightly higher than those from the MC Dropout method. This shows that MC Dropout is more robust
than MC DropConnect.

Table 11 shows the AUC scores for multiple trials of OOD detection using the ensemble method
with custom versions of the pendulum environment. The Ensemble method achieves a mean AUC
score of around 0.6 along with the standard deviation of around 0.01 for the custom version where
the length of the pole was decreased to 0.1. The method achieves a mean AUC score of 0.573 along
with a standard deviation of around 0.021 for the custom environment with a decreased mass of
0.05. The standard deviation values are lower compared to that from MC DropConnect and MC
Dropout methods. The results from the ensemble method show that it is more robust than the other
two methods.

Table 12 shows the AUC scores from different trials of OOD detection using the MC DropConnect
method for the custom pong environment with changing severity levels in gaussian noise. The MC
DropConnect method achieves a mean AUC score of 0.681 with a standard deviation of around 0.02
for a severity level of 3. It achieves higher mean scores of 0.744 with standard deviation of almost
zero and 0.815 with standard deviation of almost 0.01 with severity levels of 4 and 5 respectively.
This shows that the the OOD detection performance of MC DropConnect increases with increase
in the severity level in gaussian noise. The very low standard deviation values also highlight the
reproducibility of the performance.

Table 13 shows the AUC scores from different trials of OOD detection using the MC DropConnect
method for the custom pong environment with changing severity levels in impulse noise. The MC
DropConnect method achieves mean AUC scores of 0.69 with standard deviation of around 0.01
for severity level of 3. It achieves a mean AUC score 0.76 with a standard deviation of around 0.01
and 0.814 with a standard deviation of 0.01 for severity levels of 4 and 5 respectively. Similar to the
gaussian noise, the OOD detection performance of MC DropConnect also increases with an increase
in the corruption levels of impulse noise in the environment. The very low standard deviation values
also highlight the reproducibility of the performance.
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Gravity: 50 Length of the pole: 5 Mass of the pole: 5

AUC score trial 1 0.726 0.569 0.674
AUC score trial 2 0.626 0.613 0.642
AUC score trial 3 0.610 0.578 0.726
AUC score trial 4 0.618 0.656 0.701
AUC score trial 5 0.727 0.651 0.677
Mean AUC score ± Std 0.661 ± 0.060 0.614 ± 0.040 0.684 ± 0.031

Table 9: AUC scores obtained during multiple trials of OOD detection using MC Dropout on the
custom versions of the pendulum environment along with their configurations. The mean AUC score
and the standard deviation are also highlighted for each configuration.

Gravity: 50 Length of the pole: 5 Mass of the pole: 5

AUC score trial 1 0.550 0.628 0.533
AUC score trial 2 0.602 0.682 0.543
AUC score trial 3 0.587 0.555 0.529
AUC score trial 4 0.599 0.588 0.659
AUC score trial 5 0.592 0.726 0.715
Mean AUC score ± Std 0.586 ± 0.021 0.636 ± 0.069 0.596 ± 0.086

Table 10: AUC scores obtained during multiple trials of OOD detection using MC DropConnect on
the custom versions of the pendulum environment along with their configurations. The mean AUC
score and the standard deviation are also highlighted for each configuration.

Table 14 shows the AUC scores from different trials of OOD detection using the MC DropConnect
method for the custom pong environment with changing severity levels in motion blur corruption.
The MC DropConnect method achieves mean AUC scores of around 0.7 with a standard deviation of
0.01, for severity level of 3. It achieves a mean AUC score of 0.67 with a standard deviation of 0.01
and 0.665 with a standard deviation of around 0.02 for severity levels of 4 and 5 respectively. Unlike
the gaussian noise and the impulse noise, the OOD detection performance of MC DropConnect is
not affected much by varying levels of motion blur in the environment. However, the lower standard
deviation values highlight the reproducibility of its performance.

Table 15 shows the AUC scores from different trials of OOD detection using the MC DropConnect
method for the custom pong environment with changing severity levels in pixelation. The MC
DropConnect method achieves mean AUC scores of 0.589 with a standard deviation of around 0.01
and 0.558 with a standard deviation of almost zero for severity levels of 3 and 4 respectively. The
slightly lower values of the AUC scores show that the method is not very efficient in detecting the
OOD observations due to corruption from pixelation. Also, the OOD detection performance is not
affected much by varying levels of pixelation in the environment. However, the lower standard
deviation values show that the OOD detection performance of the MC DropConnect is reproducible.

Table 16 shows the AUC scores from different trials of OOD detection using the ensemble method for
the custom pong environments with changing severity level in gaussian noise. The ensemble method
achieves mean AUC scores of around 0.64 with a standard deviation of 0.01 with a severity level of 3.
It achieves a mean AUC score of 0.731 with a standard deviation of almost zero and 0.825 with a
standard deviation of almost zero for corruption levels of 4 and 5 respectively. This shows that the
OOD detection performance of the ensemble method increases with the increase in the corruption
level of gaussian noise in the environment. The lower standard deviation values also highlight the
reproducibility of the performance. Overall, the ensemble method does an excellent job in detecting
OOD observations due to gaussian noise.

Table 17 shows the AUC scores from different trials of OOD detection using the ensemble method for
the custom pong environments with changing severity level in impulse noise. The ensemble method
achieves mean AUC scores of around 0.65, 0.76 and 0.830 with a standard deviations of almost
zero for severity levels of 3, 4 and 5 respectively. Similar to the gaussian noise, the OOD detection
performance of the ensemble method also increase with an increase in the levels of impulse noise.
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Length of the pole: 0.1 Mass of the pole: 0.05

AUC score trial 1 0.583 0.582
AUC score trial 2 0.619 0.546
AUC score trial 3 0.612 0.587
AUC score trial 4 0.601 0.596
AUC score trial 5 0.592 0.556
Mean AUC score ± Std 0.602 ± 0.014 0.573 ± 0.021

Table 11: AUC scores obtained during multiple trials of OOD detection using ensemble on the custom
versions of the pendulum environment along with their configurations. The mean AUC score and the
standard deviation are also highlighted for each configuration.

Gaussian noise
σ = 0.18 σ = 0.26 σ = 0.38

AUC score trial 1 0.684 0.738 0.813
AUC score: trial 2 0.696 0.747 0.801
AUC score: trial 3 0.683 0.749 0.828
AUC score: trial 4 0.644 0.737 0.827
AUC score: trial 5 0.699 0.749 0.805
Mean AUC score ± Std 0.681 ± 0.022 0.744 ± 0.006 0.815 ± 0.012

Table 12: AUC scores obtained during multiple trials of OOD detection using MC DropConnect on
the custom versions with changing severity level in the gaussian noise for the pong environment. The
mean AUC scores and the standard deviations are also highlighted.

The lower standard deviation values highlight the reproducibility of the performance. Overall, the
ensemble method does an excellent job in detecting OOD observations due to impulse noise.

Table 18 shows the AUC scores from different trials of OOD detection using the ensemble method for
the custom pong environments with changing severity levels in motion blur corruption. The ensemble
method achieves mean AUC scores of around 0.9 with a standard deviation of 0.01, 0.86 with a
standard deviation of almost zero and 0.834 with a standard deviation of around 0.01 for severity
levels of 3, 4 and 5 respectively. This shows that the MC DropConnect is very efficient in detecting
the OOD observations due to corruption from motion blur. However, unlike for the gaussian noise
and the impulse noise, the OOD detection performance is seen to be slightly affected adversely by
the increase in levels of motion blur in the environment. But, the lower standard deviation values
highlight the reproducibility of its performance. Overall, the higher AUC scores show that the
ensemble method does an excellent job in detecting OOD observations due to motion blur.

Table 19 shows the AUC scores from different trials of OOD detection using the ensemble method
for the custom pong environments with changing severity level in pixelation. The ensemble method
achieves AUC scores of around 0.82 and 0.63 for severity levels of 3 and 4 respectively in all the trials.
This shows that the ensemble is efficient in detecting the OOD observations due to corruption from
pixelation especially when the corruption level is medium. Also, the OOD detection performance
is adversely affected by the increase in corruption due to pixelation in the environment. However,
constant AUC score across trials shows the reproducibility of OOD detection performance of the
ensemble method.
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Impulse noise
p = 0.09 p = 0.17 p = 0.27

AUC score trial 1 0.712 0.750 0.822
AUC score: trial 2 0.698 0.766 0.813
AUC score: trial 3 0.676 0.740 0.797
AUC score: trial 4 0.683 0.775 0.818
AUC score: trial 5 0.688 0.752 0.818
Mean AUC score ± Std 0.691 ± 0.014 0.756 ± 0.014 0.814 ± 0.010

Table 13: AUC scores obtained during multiple trials of OOD detection using MC DropConnect on
the custom versions with changing severity level in the impulse noise for the pong environment. The
mean AUC scores and the standard deviations are also highlighted.

Motion blur
ρ = 15, σ = 8 ρ = 15, σ = 12 ρ = 20, σ = 15

AUC score trial 1 0.707 0.663 0.645
AUC score: trial 2 0.684 0.662 0.668
AUC score: trial 3 0.693 0.682 0.657
AUC score: trial 4 0.684 0.677 0.668
AUC score: trial 5 0.705 0.656 0.685
Mean AUC score ± Std 0.695 ± 0.011 0.668 ± 0.011 0.665 ± 0.015

Table 14: AUC scores obtained during multiple trials of OOD detection using MC DropConnect on
the custom versions with changing severity level in the motion blur for the pong environment. The
mean AUC scores and the standard deviations are also highlighted.

Pixelate
f = 0.4 f = 0.3

AUC score trial 1 0.578 0.556
AUC score: trial 2 0.598 0.560
AUC score: trial 3 0.606 0.553
AUC score: trial 4 0.584 0.553
AUC score: trial 5 0.579 0.565
Mean AUC score ± Std 0.589 ± 0.012 0.558 ± 0.005

Table 15: AUC scores obtained during multiple trials of OOD detection using MC DropConnect on
the custom versions with changing severity level in pixelation for the pong environment. The mean
AUC scores and the standard deviations are also highlighted.

Gaussian noise
σ = 0.18 σ = 0.26 σ = 0.38

AUC score trial 1 0.647 0.728 0.819
AUC score: trial 2 0.621 0.731 0.823
AUC score: trial 3 0.634 0.735 0.829
AUC score: trial 4 0.627 0.730 0.831
AUC score: trial 5 0.644 0.730 0.821
Mean AUC score ± Std 0.635 ± 0.011 0.731 ± 0.003 0.825 ± 0.005

Table 16: AUC scores obtained during multiple trials of OOD detection using ensemble on the custom
versions with changing severity level in the gaussian noise for the pong environment. The mean AUC
scores and the standard deviations are also highlighted.
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Impulse noise
p = 0.09 p = 0.17 p = 0.27

AUC score trial 1 0.650 0.758 0.836
AUC score: trial 2 0.650 0.769 0.830
AUC score: trial 3 0.654 0.755 0.827
AUC score: trial 4 0.656 0.763 0.830
AUC score: trial 5 0.651 0.748 0.826
Mean AUC score ± Std 0.652 ± 0.002 0.759 ± 0.008 0.830 ± 0.004

Table 17: AUC scores obtained during multiple trials of OOD detection using ensemble on the custom
versions with changing severity level in the impulse noise for the pong environment. The mean AUC
scores and the standard deviations are also highlighted.

Motion blur
ρ = 15, σ = 8 ρ = 15, σ = 12 ρ = 20, σ = 15

AUC score trial 1 0.886 0.857 0.831
AUC score: trial 2 0.884 0.856 0.822
AUC score: trial 3 0.902 0.860 0.841
AUC score: trial 4 0.904 0.860 0.838
AUC score: trial 5 0.910 0.861 0.839
Mean AUC score ± Std 0.897 ± 0.011 0.859 ± 0.002 0.834 ± 0.008

Table 18: AUC scores obtained during multiple trials of OOD detection using ensemble on the custom
versions with changing severity level in the motion blur for the pong environment. The mean AUC
scores and the standard deviations are also highlighted.

Pixelate
f = 0.4 f = 0.3

AUC score trial 1 0.823 0.634
AUC score: trial 2 0.823 0.634
AUC score: trial 3 0.823 0.634
AUC score: trial 4 0.823 0.634
AUC score: trial 5 0.823 0.634
Mean AUC score ± Std 0.823 ± 0.00 0.634 ± 0.00

Table 19: AUC scores obtained during multiple trials of OOD detection using ensemble on the custom
versions with changing severity level in pixelation for the pong environment. The mean AUC scores
and the standard deviations are also highlighted.
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