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Abstract

In recent years, the transformer has established itself as a workhorse in many
applications ranging from natural language processing to reinforcement learning.
Similarly, Bayesian deep learning has become the gold-standard for uncertainty
estimation in safety-critical applications, where robustness and calibration are cru-
cial. Surprisingly, no successful attempts to improve transformer models in terms
of predictive uncertainty using Bayesian inference exist. In this work, we study
this curiously underpopulated area of Bayesian transformers. We find that weight-
space inference in transformers does not work well, regardless of the approximate
posterior. We also find that the prior is at least partially at fault, but that it is very
hard to find well-specified weight priors for these models. We hypothesize that
these problems stem from the complexity of obtaining a meaningful mapping from
weight-space to function-space distributions in the transformer. Therefore, moving
closer to function-space, we propose a novel method based on the implicit repa-
rameterization of the Dirichlet distribution to apply variational inference directly
to the attention weights. We find that this proposed method performs competitively
with our baselines.

1 Introduction

The transformer [57] is a deep learning architecture commonly used to process sequences of data,
such as text. Thanks to multi-head self-attention, the transformer builds contextual embeddings
by capturing the relationships between the sequence elements. While being most famous for their
state-of-the-art performance in natural language processing [5, 14], transformers are also used in
computer vision [7, 15, 32, 52, 61], reinforcement learning [6, 37], as well as audio [25, 29, 47] and
video [63] processing, yielding impressive results.

The Bayesian learning paradigm provides a theoretical framework to obtain predictive uncertainty,
select the optimal model, and improve its calibration. Furthermore, by designing an informative
prior for the parameters, Bayesian models offer a principled way to incorporate assumptions about
the inferred distribution, thus providing regularization. Finally, recent work [36, 44] has shown that
Bayesian neural networks (BNN) are often better calibrated than standard neural networks.

If transformers and Bayesian deep learning are both so popular, why have we not seen any successful
Bayesian transformer models? By attempting to implement such models, we make the following
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contributions: (i) We find that weight space inference in transformers does not provide any improve-
ments over a model trained by maximum likelihood. (ii) We show that the prior is at least partially
at fault for this. (iii) We propose to perform inference on the attention weights rather than on the
parameters, and present a novel variational method for this using the Dirichlet distribution.

2 Background
2.1 Bayesian deep learning

Bayesian inference computes the posterior distribution as

P(θ | y1:N , x1:N ) = P(y1:N | θ, x1:N )P(θ)/P(y1:N | x1:N ) (1)

with neural network parameters θ, training data {(xi, yi)}Ni=1, likelihood function P(y1:N | θ, x1:N ),
prior P(θ), and evidence P(y1:N | x1:N ). The predictive distribution of a new target y∗ given x∗ is
then obtained by

P (y∗ | x∗, y1:N , x1:N ) = Eθ∼P(θ|y1:N ,x1:N )[P(y∗ | θ, x∗)] (2)

Applied to neural networks, both Eq. (1) and Eq. (2) are intractable and need to be estimated using
approximate inference methods, such as variational inference or Monte Carlo sampling.

2.2 Bayesian neural network weight space inference
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Figure 1: Plot of MLE and VI transformer. MLE
captures the mean of the generative process well
(MSE: 0.66), but VI does not (MSE: 9.58).

The most commonly used weight space infer-
ence methods in BNNs are variational inference
(VI) [3, 16, 23, 40, 41, 43], the Laplace method
[12, 31, 36], and Markov Chain Monte Carlo
(MCMC) [8, 45, 58]. While MCMC methods
directly sample from the (unnormalized) poste-
rior, VI and Laplace approximate the posterior
by another distribution. As MCMC methods are
expensive computationally and memory-wise,
we restrict our focus to VI and Laplace. When
applying these methods to transformers, we find
that weight space inference fails to improve data
fit, calibration and predictive uncertainty com-
pared to a model trained by likelihood maximization (see Fig. 1).

2.3 Empirical weight study

To understand why weight space inference fails, we study the empirical weight distribution of
transformers trained with stochastic gradient descent (SGD), hoping to obtain better priors. We follow
the framework proposed by Fortuin et al. [21]. We first examine the marginal weight distribution
where we especially study the tailedness and modality. We also identify the best-fitting distribution
and its parameters within the Gaussian, Student, Logistic, Cauchy, and Laplace families. Furthermore,
we investigate the correlation among layer weights by comparing the empirical covariance matrix
and the distribution of off-diagonal covariance elements against samples from an isotropic Gaussian.

3 Methods
3.1 Variational attention

As as alternative to weight-space inference in transformers, we propose to treat self-attention weights
as random variables and approximate their posterior distribution using VI. Previous attention weight
inference methods focus on sampling [1], while others explicitly parameterize the attention weights
with a particular distribution [2, 13, 17]. Parameters of explicitly reparameterizable distributions such
as the Gaussian [2], Weibull, and Lognormal distributions [17] are learned via VI, while others such
as the Dirichlet [13] require using REINFORCE gradient estimators [53].

We implement two baselines for our comparison: 1. Gaussian attention where the attention logits
are parameterized with a Gaussian distribution and parameters are inferred via VI and 2. DD, a data
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Table 1: VI and Laplace inference in weight-space compared to maximum likelihood models and
concrete dropout. We see that the Bayesian transformers do not outperform the baselines.

Dataset Metric MLE Ensemble Gaussian VI Laplace Final Laplace Concrete DP Gauss. Attention Dir. Attention

M
1

Log-like. -26.206 ± 0.000 -26.011 ± 0.007 -27.23 ± 0.01 -26.282 ± 0.014 -26.219 ± 0.003 -25.767 ± 0.008 -26.1623 ± 0.0006 -22.04 ± 0.01
Var. MSE 0.014 ± 0.000 0.0081 ± 0.0002 0.082 ± 0.004 0.021 ± 0.002 0.020 ± 0.003 0.007 ± 0.000 0.029 ± 0.000 0.430 ± 0.002
MSE 0.996 ± 0.000 1.0143 ± 0.0002 1.078 ± 0.001 1.0432 ± 0.0009 1.043 ± 0.002 1.0175 ± 0.0001 1.007 ± 0.000 1.0263 ± 0.0002

M
2

Log-like. -26.5670 ± 0.000 -28.592 ± 0.009 -35.43 ± 0.03 -32.92 ± 0.05 -32.469 ± 0.01 -27.11 ± 0.04 -26.374 ± 0.002 -24.841 ± 0.007
Var. MSE 16.943 ± 0.000 23.45 ± 0.09 110.57 ± 3.25 47.56 ± 0.06 47.07 ± 0.04 21.85 ± 0.08 20.9010 ± 0.0007 17.93 ± 0.03
MSE 1.170 ± 0.000 1.3552 ± 0.0003 2.95 ± 0.02 1.9943 ± 0.0008 1.972 ± 0.002 1.192 ± 0.001 1.2015 ± 0.0002 1.1928 ± 0.0006

PO
S

Log-like. -3.707 ± 0.000 -4.240 ± 0.006 -17.86 ± 0.03 -4.539 ± 0.000 -4.539 ± 0.000 -8.2004 ± 0.0001 -3.9692 ± 0.0008 -3.9682 ± 0.0003
Acc. 0.9706 ± 0.0000 0.9708 ± 0.0001 0.871 ± 0.002 0.959 ± 0.000 0.958 ± 0.000 0.964 ± 0.000 0.969 ± 0.000 0.968 ± 0.000
F1 0.971 ± 0.000 0.971 ± 0.000 0.852 ± 0.000 0.959 ± 0.000 0.959 ± 0.000 0.964 ± 0.000 0.969 ± 0.000 0.968 ± 0.000
ECE 0.03 ± 0.00 0.0261 ± 0.0001 0.052 ± 0.001 0.048 ± 0.000 0.048 ± 0.000 0.031 ± 0.000 0.0271 ± 0.0000 0.0287 ± 0.0000

M
N

IS
T Log-like. -0.074 ± 0.000 -0.1133 ± 0.0008 -3.18 ± 0.04 -0.088 ± 0.000 -0.09 ± 0.00 -0.064 ± 0.000 -0.0720 ± 0.0001 -0.1045 ± 0.0005

Acc. 0.979 ± 0.000 0.9825 ± 0.0003 0.101 ± 0.002 0.972 ± 0.000 0.972 ± 0.000 0.981 ± 0.000 0.9790 ± 0.0002 0.9738 ± 0.0003
F1 0.979 ± 0.000 0.982 ± 0.000 0.092 ± 0.000 0.972 ± 0.000 0.972 ± 0.000 0.981 ± 0.000 0.9786 ± 0.0000 0.9736 ± 0.0000
ECE 0.022 ± 0.000 0.0326 ± 0.0004 0.097 ± 0.009 0.035 ± 0.000 0.038 ± 0.000 0.020 ± 0.000 0.0227 ± 0.0002 0.0305 ± 0.0003

dependent configuration where the variational variances of the Gaussian distribution are amortized in
order to support input-dependent (i.e., heteroscedastic) uncertainties.

3.2 Implicitly reparameterized Dirichlet attention

Alternatively, we propose to directly parameterize the attention weights of each position i by a
Dirichlet distribution with parameter α = aAi, where a is the sharpness parameter and Ai the ith row
of the scaled dot-product attention weights. We then infer a using VI. Samples are obtained by drawing
from independent Gamma distributions Xk ∼ Gamma(αk, 1) and normalizing (

∑K
k=1Xk)

−1X ∼
Dirichlet(α). We further use contextual Gamma priors such that α̂ ∝ Ai, yielding an analytical KL
divergence as done by Joo et al. [33]. To obtain gradients of a Gamma random variable with respect
to α, we use the implicit gradient reparametrization [18]:

∇αz = −(qα(z))−1∇αF (z|α) (3)

where qα(z) is the Gamma density function and F (z|α) its CDF. Like Gaussian attention, we consider
a variation where the sharpness parameter depends on the input, referred to as data dependent.

4 Experiments
We run experiments using the transformer [57] and vision transformer [15] on MNIST image
classification [39], Universal Dependencies part-of-speech (POS) tagging [46] and on synthetic
datasets (M1, M2). We evaluate our models using test log-likelihood, predicted variance mean
squared error and the expected mean square error on the synthetic dataset. The test log-likelihood,
accuracy, F1-score, and expected calibration error (ECE) [26] are used for experiments on the POS
tagging and MNIST datasets. We compare the results obtained by our methods with a transformer
(MLE) and an ensemble of 30 transformers both trained by maximum likelihood. Further details are
given in Appendix A.2.

4.1 Result 1: Weight-space inference does not improve over MLE

Different posteriors do not help. We find that all weight-space VI methods are outperformed by
both maximum-likelihood baselines with respect to all metrics and on all datasets (see Table 1).
Interestingly, changing the posterior distribution does not significantly influence the performance,
considering the large gap between the scores of the VI methods and baselines (see also Table 3 in the
appendix). Furthermore, no variational posterior systematically outperforms the others.
Linearized Laplace inference (either on all parameters or just the final layer) shows much better results
than VI. However, it still underperforms our baselines. Finally, even concrete dropout improves over
VI and Laplace inference and is more competitive with our baselines.

The prior is (at least partially) at fault. In our attempt to understand the poor performance of
weight-space VI in transformers, we conduct an empirical weight distribution study. We find that the
marginal weight distributions are essentially uni-modal, except for some embedding and projection
layers which tend to have two or three less significant modes. Furthermore, other than a decrease
in tailedness (high degree of freedom) of the last layer, no recurrent pattern in the tailedness of the
weight distribution appears across the considered datasets (Fig. 4 in the appendix). Likewise, no
single distribution seems to universally fit the empirical distributions of the weights across all datasets
(see Fig. 5 and Fig. 6 in the appendix). This suggests that the shape of the weight distribution strongly
depends on the considered dataset.
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Table 2: Improvement of VI with improved priors
relative to Gaussian priors.

Dataset Gauss. VI Laplace VI Logistic VI Cauchy VI Student VI
M1 1.40% 3.80% 4.12% 1.85% 2.79%
M2 2.85% 3.06% 2.76% 4.36% 2.70%
POS 0.12% 2.05% 2.16% 0.87% -0.32%
MNIST 26.95% 33.31% 31.36% 5.66% 26.94%

Using the observations from this weight distri-
bution study, we choose more appropriate ("im-
proved") priors. Table 2 shows systematic like-
lihood improvements. Moreover, we find that
the performance of VI critically depends on the
prior parameters (see Fig. 3 in the appendix).

4.2 Results 2: Variational attention is better than weight-space inference

Dirichlet attention works well. Unlike weight-space inference, we find that inference on the
attention weights works competitively. Indeed, Dirichlet attention strongly outperforms our baselines
in terms of likelihood on the synthetic data and lies between both baselines on the POS tagging and
MNIST (Table 1). However, the data dependent configuration does not systematically outperform
its standard counterpart (see Table 5 in the appendix). Moreover, Dirichlet attention outperforms
Gaussian attention in terms of log-likelihood on the toy data and POS tagging, but not on MNIST.

Variational attention leads to more consistent prior entropies. While investigating the entropy
of the predictive distribution when sampling weights from the priors, we find that non-improved
priors yield highly variable entropy distributions, ranging from low values around 1 to higher values
around 2.3 bits. However, when sampling from improved priors selected by our weight distribution
analysis, the entropy distribution concentrates very strongly around a high value of 2.3 bits. This
same behavior is observed when sampling from the Gaussian and our proposed Dirichlet attention.
This is desirable as the prior predictive should show high uncertainty in function space.
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Figure 2: Prior predictive entropy distributions on MNIST train data. Improving the weight-space
priors and using variational attention both lead to more consistently high entropies.

5 Related work

Bayesian Transformers Previous attempts to make the transformer Bayesian have used VI to
perform inference on a subset of layers [56, 62]. While both methods claim state-of-the-art per-
formance on their respective benchmarks, Tran et al. [56] do not provide any quantitative results
and Xue et al. [62] initialize their priors to a maximum estimate of the weights which is not strictly
Bayesian. Alternatively, Fan et al. [17] parameterize the attention logits of a transformer by a Gaus-
sian distribution and finetune the deterministic self-attention of language models pretrained on large
corpora. They however only consider finetuning and not full training using variational attention.
Orthogonally, Martin et al. [42] consider attention keys, queries, values, and weights as unobserved
random variables and use sequential Monte Carlo methods to sample them.

Bayesian neural network inference BNN inference has recently advanced in terms of VI methods
with more expressive posteriors [16, 40, 41, 43, 55], more efficient inference [22, 23, 54], and greater
stability [35, 59]. Likewise, the Laplace inference for BBNs has improved in scalability using further
GGN approximations [30, 31, 36, 50, 51] and sub-network inference [12, 36]. Orthogonally, MCMC
methods for BNNs have been improved [20, 24, 60, 64], better BNN priors have been studied [19, 21],
and even deep ensembles [38] have been cast as approximate inference [9–11, 48, 49].

6 Conclusion

We have shown that weight space inference in Bayesian transformers does not work well, regardless
of the choice of posterior. We also found that choosing priors according to an empirical weight
distribution analysis improved the performance, suggesting that priors are at least partially at fault.
However, we have not found the right priors to make the method competitive. Moreover, we found
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evidence that naïve weight-space priors lead to low prior predictive entropy, and therefore do not
reflect our true beliefs about the output distribution. In order to move closer to the function-space
distribution, we suggested to perform inference on the attention weights rather than on parameters.
We proposed a novel method based on the implicit reparameterization of the Dirichlet distribution to
apply variational inference on the attention weights, which performed competitively with respect to
our baselines.
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A Appendix

A.1 Additional experimental results

A.1.1 Weight space inference

We report in Table 3 the full weight space inference results table discussed in Section 4.1.

Table 3: Weight space inference results in the transformer vs baselines
Dataset Metric MLE Ensemble Gaussian VI Laplace VI Logistic VI Cauchy VI Student VI Concrete Dropout Laplace Final Laplace

M
1

Log-likelihood -26.2075 ± 0.0000 -26.011 ± 0.007 -27.23 ± 0.01 -28.01 ± 0.16 -28.08 ± 0.11 -27.61 ± 0.02 -27.68 ± 0.10 -25.767 ± 0.008 -26.282 ± 0.014 -26.219 ± 0.003
Variance MSE 0.0137 ± 0.0000 0.0081 ± 0.0002 0.082 ± 0.004 0.24 ± 0.05 0.226 ± 0.066 0.225 ± 0.009 0.161 ± 0.046 0.0066 ± 0.0000 0.021 ± 0.002 0.020 ± 0.003
MSE 0.9963 ± 0.0000 1.0143 ± 0.0002 1.078 ± 0.001 1.174 ± 0.016 1.181 ± 0.014 1.133 ± 0.001 1.128 ± 0.015 1.0175 ± 0.0001 1.0432 ± 0.0009 1.043 ± 0.002

M
2

Log-likelihood -26.5670 ± 0.0000 -28.592 ± 0.009 -35.427 ± 0.034 -35.86 ± 0.11 -35.72 ± 0.08 -37.15 ± 0.03 -35.43 ± 0.61 -27.11 ± 0.04 -32.92 ± 0.05 -32.469 ± 0.01
Variance MSE 16.9430 ± 0.0000 23.45 ± 0.09 110.57 ± 3.25 125.08 ± 14.73 121.90 ± 16.25 130.11 ± 1.89 82.47 ± 15.27 21.85 ± 0.08 47.56 ± 0.06 47.07 ± 0.04
MSE 1.1700 ± 0.0000 1.3552 ± 0.0003 2.95 ± 0.02 3.10 ± 0.07 3.03 ± 0.09 3.45 ± 0.01 2.82 ± 0.09 1.192 ± 0.001 1.9943 ± 0.0008 1.972 ± 0.002

PO
S

Log-likelihood -3.7066 ± 0.0000 -4.240 ± 0.006 -17.86 ± 0.03 -17.69 ± 0.01 -18.02 ± 0.04 -17.07 ± 0.10 -22.91 ± 0.05 -8.2004 ± 0.0001 -4.5388 ± 0.0000 -4.5391 ± 0.0000
Accuracy 0.9706 ± 0.0000 0.9708 ± 0.0001 0.871 ± 0.002 0.8694 ± 0.0003 0.8689 ± 0.0004 0.878 ± 0.002 0.824 ± 0.001 0.9636 ± 0.0000 0.9585 ± 0.0000 0.9584 ± 0.0000
F1 0.9707 ± 0.0000 0.9706 ± 0.0000 0.8524 ± 0.0000 0.8531 ± 0.0000 0.8535 ± 0.0000 0.8594 ± 0.0000 0.7980 ± 0.0000 0.9637 ± 0.0000 0.9585 ± 0.0000 0.9585 ± 0.0000
ECE 0.0302 ± 0.0000 0.0261 ± 0.0001 0.052 ± 0.001 0.0477 ± 0.0007 0.0498 ± 0.0007 0.0543 ± 0.0007 0.050 ± 0.001 0.0314 ± 0.0000 0.0481 ± 0.0000 0.0481 ± 0.0000

M
N

IS
T Log-likelihood -0.0739 ± 0.0000 -0.1133 ± 0.0008 -3.179 ± 0.038 -3.490 ± 0.125 -3.385 ± 0.126 -2.636 ± 0.016 -3.183 ± 0.009 -0.0642 ± 0.0000 -0.0879 ± 0.0000 -0.0903 ± 0.0000

Accuracy 0.9786 ± 0.0000 0.9825 ± 0.0003 0.101 ± 0.002 0.099 ± 0.003 0.099 ± 0.003 0.1024 ± 0.0002 0.099 ± 0.002 0.9807 ± 0.0000 0.9720 ± 0.0000 0.9720 ± 0.0000
F1 0.9786 ± 0.0000 0.9820 ± 0.0000 0.0923 ± 0.0000 0.0173 ± 0.0000 0.0173 ± 0.0000 0.0961 ± 0.0000 0.0173 ± 0.0000 0.9807 ± 0.0000 0.9719 ± 0.0000 0.9720 ± 0.0000
ECE 0.0218 ± 0.0000 0.0326 ± 0.0004 0.097 ± 0.009 0.108 ± 0.010 0.117 ± 0.012 0.064 ± 0.001 0.110 ± 0.034 0.0200 ± 0.0000 0.0354 ± 0.0000 0.0377 ± 0.0000

A.1.2 Sub-network variational inference

In addition to performing inference on the entire set of model parameters presented in Section 4.1,
we experiment sub-network variational inference. We find that this method performs better than full
inference while still under-performing our baselines. Interestingly, we observe the same behavior as
in full network VI, where the posterior distribution does not significantly change the result.

Table 4: VI on first attention layer with Gaussian priors vs baselines
Dataset Metric MLE Ensemble Gaussian VI Laplace VI Logistic VI Cauchy VI Student VI

M
1

Log-likelihood -26.2075 ± 0.0000 -26.0107 ± 0.0067 -26.1726 ± 0.0013 -26.1723 ± 0.0002 -26.1724 ± 0.0001 -26.1802 ± 0.0055 -26.1844 ± 0.0007
Variance MSE 0.0137 ± 0.0000 0.0081 ± 0.0002 0.0083 ± 0.0000 0.0081 ± 0.0003 0.0082 ± 0.0003 0.0067 ± 0.0000 0.0081 ± 0.0001
MSE 0.9963 ± 0.0000 1.0143 ± 0.0002 1.0006 ± 0.0000 1.0006 ± 0.0007 1.0006 ± 0.0006 1.0026 ± 0.0001 1.0017 ± 0.0003

M
2

Log-likelihood -26.5670 ± 0.0000 -28.5916 ± 0.0085 -30.5040 ± 0.0039 -30.5249 ± 0.0059 -30.5258 ± 0.0069 -30.7045 ± 0.0080 -30.6088 ± 0.0055
Variance MSE 16.9430 ± 0.0000 23.4497 ± 0.0921 61.2115 ± 0.1124 61.4751 ± 0.5851 61.4699 ± 0.5920 61.3169 ± 0.1897 58.3248 ± 0.2691
MSE 1.1700 ± 0.0000 1.3552 ± 0.0003 1.8599 ± 0.0005 1.8637 ± 0.0054 1.8636 ± 0.0051 1.8992 ± 0.0012 1.8695 ± 0.0005

PO
S Log-likelihood -3.7066 ± 0.0000 -4.2401 ± 0.0059 -4.3838 ± 0.0003 -4.3836 ± 0.0017 -4.3835 ± 0.0016 -4.3857 ± 0.0002 -4.4075 ± 0.0013

Accuracy 0.9706 ± 0.0000 0.9708 ± 0.0001 0.9589 ± 0.0000 0.9589 ± 0.0000 0.9589 ± 0.0000 0.9588 ± 0.0001 0.9581 ± 0.0000
F1 0.9707 ± 0.0000 0.9706 ± 0.0000 0.9588 ± 0.0000 0.9589 ± 0.0000 0.9589 ± 0.0000 0.9588 ± 0.0000 0.9579 ± 0.0000
ECE 0.0302 ± 0.0000 0.0261 ± 0.0001 0.0336 ± 0.0000 0.0335 ± 0.0001 0.0335 ± 0.0001 0.0415 ± 0.0000 0.0333 ± 0.0000

M
N

IS
T Log-likelihood -0.0739 ± 0.0000 -0.1133 ± 0.0008 -0.1352 ± 0.0001 -0.1298 ± 0.0001 -0.1333 ± 0.0003 -0.1313 ± 0.0002 -0.1370 ± 0.0004

Accuracy 0.9786 ± 0.0000 0.9825 ± 0.0003 0.9592 ± 0.0001 0.9615 ± 0.0002 0.9614 ± 0.0001 0.9594 ± 0.0002 0.9583 ± 0.0000
F1 0.9786 ± 0.0000 0.9820 ± 0.0000 0.9595 ± 0.0000 0.9616 ± 0.0000 0.9615 ± 0.0000 0.9592 ± 0.0000 0.9584 ± 0.0000
ECE 0.0218 ± 0.0000 0.0326 ± 0.0004 0.0411 ± 0.0003 0.0395 ± 0.0002 0.0404 ± 0.0001 0.0276 ± 0.0003 0.0424 ± 0.0001

A.1.3 Variational attention

We report in Table 5 the full variational attention results table discussed in Section 4.2 including the
data dependent configurations.

Table 5: Variational attention methods vs baselines
Dataset Metric MLE Ensemble Gauss. Attention Gauss. DD Attention Dir. Attention Dir. DD Attention

M1
Log-likelihood -26.208 ± 0.000 -26.011 ± 0.007 -26.1623 ± 0.0006 -26.1799 ± 0.0001 -22.04 ± 0.01 -25.242 ± 0.006
Variance MSE 0.014 ± 0.000 0.0081 ± 0.0002 0.029 ± 0.000 0.045 ± 0.000 0.430 ± 0.002 0.1012 ± 0.0004
MSE 0.996 ± 0.000 1.0143 ± 0.0002 1.007 ± 0.000 1.007 ± 0.000 1.0263 ± 0.0002 1.0417 ± 0.0003

M2
Log-likelihood -26.567 ± 0.000 -28.592 ± 0.009 -26.374 ± 0.002 -25.3282 ± 0.0003 -24.841 ± 0.007 -26.263 ± 0.004
Variance MSE 16.943 ± 0.000 23.45 ± 0.09 20.9010 ± 0.0007 18.528 ± 0.002 17.93 ± 0.03 20.17 ± 0.02
MSE 1.17 ± 0.00 1.3552 ± 0.0003 1.2015 ± 0.0002 1.089 ± 0.000 1.1928 ± 0.0006 1.3018 ± 0.0001

POS

Log-likelihood -3.707 ± 0.000 -4.240 ± 0.006 -3.9692 ± 0.0008 -4.0934 ± 0.0005 -3.9682 ± 0.0003 -3.859 ± 0.002
Accuracy 0.9706 ± 0.0000 0.9708 ± 0.0001 0.969 ± 0.000 0.969 ± 0.000 0.968 ± 0.000 0.969 ± 0.000
F1 0.9707 ± 0.0000 0.9706 ± 0.0000 0.969 ± 0.000 0.969 ± 0.000 0.968 ± 0.000 0.969 ± 0.000
ECE 0.0302 ± 0.0000 0.0261 ± 0.0001 0.0271 ± 0.0000 0.0270 ± 0.0000 0.0287 ± 0.0000 0.0278 ± 0.0001

MNIST

Log-likelihood -0.0739 ± 0.0000 -0.1133 ± 0.0008 -0.0720 ± 0.0001 -0.0838 ± 0.0001 -0.1045 ± 0.0005 -0.0955 ± 0.0009
Accuracy 0.9786 ± 0.0000 0.9825 ± 0.0003 0.9790 ± 0.0002 0.9769 ± 0.0001 0.9738 ± 0.0003 0.9766 ± 0.0002
F1 0.9786 ± 0.0000 0.9820 ± 0.0000 0.9786 ± 0.0000 0.9769 ± 0.0000 0.9736 ± 0.0000 0.9764 ± 0.0000
ECE 0.0218 ± 0.0000 0.0326 ± 0.0004 0.0227 ± 0.0002 0.0252 ± 0.0001 0.0305 ± 0.0003 0.0281 ± 0.0000

A.1.4 Likelihood sensitivity to the prior

As discussed in Section 4.1, we find that the model test likelihood is very sensitive to the choice of
prior (see Figure 3).
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Figure 3: Log-likelihood sensitivity to the choice of prior scale

A.1.5 Weight distribution tailedness

We here present more detailed results regarding the tailedness of the weight distribution. We find that
no obvious patterns in the thickness of tails exist across the considered dataset (Figure 4). Q-Q plots of
the empirical weight distribution against light-tailed Gaussian and heavier tailed Laplace distribution
provide more evidence of this phenomenon. Indeed, the weight distributions of transformers trained
on MNIST and POS tagging are well fitted by a Gaussian, while transformers trained on M1 and
M2 toy datasets are well fitted by a Laplace (Figure 5 and 6). This suggest that not one universal
distribution fits the empirical distribution of the weights across all datasets.
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Figure 4: Marginal weight distribution tailedness. No patterns in the thickness of the tails, except for
a decrease at the last layer, appears across the considered tasks.
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Figure 5: Attention queries matrix weight distribution Q-Q plot.
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Figure 6: Attention MLP hidden layer empirical weight distribution Q-Q plot.

A.1.6 Off-diagonal covariance value distributions

We here present histograms of the off-diagonal empirical covariance elements. Covariance values
have small magnitude and concentrate strongly in distribution around 0. Depending on the dataset,
off-diagonal covariance elements are slightly larger than samples from an isotropic Gaussian as
shown in Figure 7 and 10.
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Figure 7: M1 off-diagonal covariance matrix value histograms
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Figure 8: M2 off-diagonal covariance matrix value histograms
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Figure 9: POS tagging off-diagonal covariance matrix value histograms
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Figure 10: MNIST off-diagonal covariance matrix value histograms

A.1.7 Concrete dropout high/low entropy samples

Here we present samples from the MNIST test set which have high (respectively low) predictive
distribution entropy. By visual inspection, we find that high predictive entropy samples have an
ambiguous labeling while low entropy predictive sample labels are much easier to identify.
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Figure 11: Concrete Dropout : highest/lowest entropy MNIST test samples

A.2 Implementation details

In the following section, we present more detailed implementation specifications.

A.2.1 Architecture & Datasets

Toy Data We generate synthetic data from the two following models:

• Model M1: Xt+1 =
∑4
i=0 0.2 cos(0.4πiXt + 1/(i+ 1)) +

√
0.5εt+1

13



• Model M2: Xt+1 =
∑4
i=0

∑4
j=0 0.5 cos(0.8πjXt−i) +

√
0.1εt+1

where (Xi)
4
i=0 and (εt)

T
t=1 are i.i.d standard Gaussian random variables. We use 800 training,

80 validation and 80 testing sequences of length 24. For experiments with Toy Data, we use the
transformer from [57] with GeLU activation [27], a unique attention block, one attention head and
a hidden size of 64. We train until convergence for 100 epochs. We draw 30 posterior samples to
compute the predictive distribution and KL divergence. We evaluate our model with the test data
log-likelihood, mean squared error of the predicted variance and the expected mean square error
given the previous value Xt.

Part of Speech Tagging We use the English split of the Part of Speech tagging dataset from the
Universal Dependencies v1.2 corpus [46]. This dataset contains 204’586 train, 25’148 validation
and 25’096 test tokens. We use a maximum length of 40 tokens, pad the shorter sequences and split
the sentences which exceed the text length. For experiments with this dataset, we use a transformer
from [57] with GeLU activation, a unique attention block, one attention head and a hidden size of 32.
We train until convergence for 100 epochs. We draw 10 posterior samples to compute the predictive
distribution and KL divergence. We evaluate our model with the token level test data log-likelihood,
token level accuracy, token level F1-score and expected calibration error (ECE) [26].

MNIST We experiment with the MNIST image classification dataset [39]. We split the original
dataset into 48’000 training, 12’000 validation and 9’984 testing samples. For experiments with
this dataset, we use a Vision transformer from [15] with GeLU activation, two attention block, one
attention head, a hidden size of 32 and a patch size of 4. We train until convergence for 150 epochs.
We draw 10 posterior samples to compute the predictive distribution and KL divergence. We evaluate
our model with the test data log-likelihood, accuracy, F1-score and ECE.

A.2.2 Training setup

Our models are trained using the Adam optimizer [34] with the triangular learning rate schedule from
[57]. Our weight distribution experiments are conducted using 900 transformers trained by likelihood
maximization with SGD as done in [21].

A.2.3 Software packages

We implement and train our models using the JAX [4] and Haiku [28] Python libraries.
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