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The Neural Tangent Kernel (NTK), defined as the outer product of the neural network (NN) Jaco-
bians, Θθ(x1, x2) =

[
∂f(θ, x1)

/
∂θ
] [
∂f(θ, x2)

/
∂θ
]T

, has emerged as a central object of study
in deep learning. However, it is notoriously expensive to compute, severely limiting its practical
utility. We perform the first in-depth analysis of the compute and memory requirements for NTK
computation in finite NNs. Leveraging their structure, we propose two novel algorithms that change
the exponent of the compute and memory requirements of the finite width NTK, dramatically im-
proving efficiency in a wide range of NN architectures on all hardware platforms. We open-source
[github.com/iclr2022anon/fast finite width ntk] our two algorithms as general-purpose JAX func-
tion transformations that apply to any differentiable computation and introduce no hyperparameters.

Notation. Consider a NN f(θ, x) ∈ RO with O outputs (logits) per input x and and a total number
P of trainable parameters θ = vec

[
θ0, . . . , θL], with each θl of size Pl, P =

∑L
l=0 Pl. Also assume

the network has K intermediate pre-activations yk of size Yk each, Y =
∑K
k=1 Yk. The NTK is

Θθ︸︷︷︸
O×O

:=
∂f(θ, x1)

∂θ︸ ︷︷ ︸
O×P

∂f(θ, x2)

∂θ

T

︸ ︷︷ ︸
P×O

=

L∑
l=0

∂f(θ, x1)

∂θl︸ ︷︷ ︸
O×Pl

∂f(θ, x2)

∂θl

T

︸ ︷︷ ︸
Pl×O

(1)

We denote FP to be the (time or memory, depending on the context) cost of a single forward pass
f(θ, x). For memory, we exclude the cost of storing all P weights in memory, but rather define
it to be the cost of evaluating f one JAX [1] primitive yk at a time, amounting to no more than
maxl Pl + maxk Yk, which we denote as simply Pl + Yk for brevity. Finally, we will consider x1
and x2 to be batches of N inputs each, in which case the NTK will be a NO× NO matrix.

Jacobian-vector products (JVP) and vector-Jacobian products (VJP). We define

JVP(f,θ,x) : θt ∈ RP 7→ ∂f (θ, x)

∂θ
θt ∈ RO; VJP(f,θ,x) : fc ∈ RO 7→ ∂f (θ, x)

∂θ

T

fc ∈ RP. (2)

In JAX the time cost of both is comparable to FP. The memory cost of a JVP is FP as well, while the
memory cost of a VJP is generally Y + P, since it requires storing all K intermediate pre-activations
for efficient backprop and all L output cotangents. However, for the purpose of computing the NTK,
we never need to store the whole Jacobian ∂f/∂θ, but only individual cotangents like ∂f/∂θl to
compute the sum in Eq. (1). Hence we consider VJP to cost Y + Pl memory. Finally, for a batch of
N inputs x, JVP and VJP cost N [FP] time; N [FP] + P and N

[
Y + Pl

]
+ P memory respectively.

Jacobian. For NNs, the Jacobian ∂f/∂θ is most often computed via O VJP calls on rows of the
identity matrix IO, i.e. costs O [VJP] time and memory less network weights and pre-activations that

can be reused across VJP calls, resulting in NO [FP] time and NO
[
Yk + Pl

]
+ NY + P memory.

1 Jacobian contraction

This baseline method of evaluating the NTK consists in computing the Jacobians ∂f/∂θ
and contracting them as in Eq. (1). The contraction costs N2O2P time and N2O2 +
NOPl memory. Adding up the cost of computing the Jacobian ∂f/∂θ we arrive at

Jacobian contraction: NO [FP] + N2O2P time; N2O2 + NO
[
Yk + Pl

]
+ NY + P memory.
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2 NTK-vector products – our �rst contribution

Consider the NTK-vector product function:� VP : v 2 RO 7! � � v 2 RO: Applying it toO columns
of the identity matrixI O allows to compute the NTK, i.e.� � I O = � � : Expand� VP(v) = � � v as

@f(�; x 1)
@�

@f(�; x 2)
@�

T

v =
@f(�; x 1)

@�
VJP( f;�;x 2 ) (v) = JVP( f;�;x 1 )

�
VJP( f;�;x 2 ) (v)

�
; (3)

where we have observed that the NTK-vector product can be expressed as a composition of a JVP
and a VJP. The cost of computing� � is then equivalent to the cost of Jacobian, since it consists ofO
VJPs followed byO (cheaper) JVPs, thereforeO [FP] time andO

�
Yk + Pk

�
+ Y + P memory. In

the batched setting Eq. (3) is repeated for each pair of inputs, and therefore time increases by a factor
of N2 to becomeN2O [FP]. However, the memory cost grows linearly inN (except for the cost of
storing the NTK of sizeN2O2), since intermediate pre-activations and tangents/cotangents necessary
to compute the JVP and VJP can be computed for each batchx1 andx2 separately, and then reused
for every pairwise combination. Therefore memory cost is equivalent to Jacobian, and we arrive at

NTK-vector products: N2O [FP] time; N2O2 + NO
�
Yk + Pl

�
+ NY + P memory.

3 Structured derivatives – our second contribution

Rewrite� � from Eq. (1) using the chain rule and pre-activationy notation:

� � =
X

l;k 1 ;k 2

 
@f1
@yk 1

1

@yk 1
1

@�l

!  
@f2
@yk 2

2

@yk 2
2

@�l

! T

=
X

l;k 1 ;k 2

@f1
@yk 1

1

@yk 1
1

@�l
@yk 2

2

@�l

T
@f2
@yk 2

2

T

; (4)

wheref i = f (�; x i ), and we only consider@yk i
i =@�l to be non-zero if� l is a direct input toyk i

i .

Both Jacobian contraction and NTK-vector products perform this sum of contractions, albeit implic-
itly via VJPs and JVPs, without explicit instantiation of primitive Jacobians@y=@�. However, while
VJPs and JVPs themselves are guaranteed to be computationally optimal, higher order computations
like their composition (NTK-vector products) or contraction (Jacobian contraction) are not. The idea
of Structured derivatives is to design rules for ef�cient computation of such contractions, similarly
to how JAX and other AD packages have rules for JVPs and VJPs.

Speci�cally, our rules identify a few simple types of structure (e.g. block diagonal, constant-block
diagonal, tiling) in@yk i

�
@�l , that allow us to simplify the contraction in Eq. (4). In practice this

amounts to replacing the inner terms@yk 1
1

�
@�l and@yk 2

2

�
@�l with (much) smaller subarrays and

modifying the contraction. In §E we provide speci�c descriptions of our rules and their impact on
the computational complexity of Eq. (4). Notably, the contraction is never slower than Jacobian
contraction, and is at mostN2O2 min [Y; P] : For a simple concrete example, see §I.4.

The remaining cost to compute the factors@fi =@yk i
i , and @yk i

i =@�l depends on the speci�c
pair of primitives yk 1

1 and yk 2
2 , but is generally similar to the cost of Jacobian except for (1)

we don't need to compute and storeNO �nal weight space cotangents@fi =@�l , but (2) we
do have to instead processN small subarrays of primitive Jacobians@yk i

i =@�l , which we con-
sider to costJk i

l . We summarize generic cost estimates below and in Table 1, and show
next that they end up bene�cial (asymptotically and practically) in most common settings.

NO [FP] + N2O2 min [Y; P] + N [J � OP] time; N2O2 + NOYk + NJk
l + NY + P memory.

Application to FCNs and CNNs. We considerK = L-layer CNNs with channel countW, pixel
countD, �lter size F, and global average pooling before the top FC layer. PluggingPl = FW2

(OW for k = K), Yk = DW (O for k = K), FP = LDFW 2 + OW, Jk
l = DFW (W for k = K;

convolutions amd matrix multiplications have the Constant block-diagonal structure – see §E.3) we
arrive at Table 2. For FCNs we simply putD = F = 1 , and obtain Table 3 (and Fig. 1, Fig. 3).
Notably, in both cases Structured derivatives are asymptotically better than Jacobian contraction in
time and memory, under a mild condition ofD � OW. Finally, we also con�rm that our methods
are practically bene�cial in a much wider set of operations used by contemporary ImageNet models
in Fig. 2 and Fig. 4.
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Method Time Memory Use when
Jacobian contraction N O [FP] + N2O2P N2O2 + NO

�
Yk + Pl

�
+ NY + P P < Y, smallO

NTK-vector products N2O [FP] N2O2 + NO
�
Yk + Pl

�
+ NY + P FP < OP, largeO, smallN

Structured derivatives N O [FP] + N2O2 min [Y; P] + N [J � OP] N2O2 + NOYk + NJk
l + NY + P FP > OP, largeO, largeN

Table 1: Generic NTK computation cost..NTK-vector products trade-off contractions for more
FP. Structured derivatives make the contraction cheaper, and usually also reduce memory.

Method Time Memory Use when
Jacobian contraction N O

�
LDFW 2 + OW

�
+ N2O2

�
LFW 2 + OW

�
N2O2 + NO

�
DW + FW2 + OW

�
+ N [LDW ] +

�
LFW 2 + OW2

�
D > OW

NTK-vector products N2O
�
LDFW 2 + OW

�
N2O2 + NO

�
DW + FW2 + OW

�
+ N [LDW ] +

�
LFW 2 + OW2

�
N = 1

Structured derivatives N O
�
LDFW 2 + OW

�
+ N2O2

�
L min(FW2; DW) + O

�
N2O2 + NO [DW] + NDFW + N [LDW ] +

�
LFW 2 + OW2

�
D < OW

Table 2: CNN NTK computation cost. Structured derivatives reduce time complexity, and have
lower memory cost ifD < OW, which is a common setting.

Method Time Memory Use when
Jacobian contraction N2O2LW 2 N2O2 + NOW2 + NLW + LW 2 Don't
NTK-vector products N2OLW 2 + N2O2 W N2O2 + NOW2 + NLW + LW 2 O > W or N = 1
Structured derivatives N OLW 2 + N2O2LW N2O2 + NOW + NLW + LW 2 O < W or L = 1

Table 3:FCN NTK computation cost. NTK-vector products allow a reduction of the time complex-
ity, while Structured derivatives reduce both time and memory complexity. For brevityO = O(LW )
is assumed in this table.

FLOPs (per NTK entry) Wall-clock time (TPUv3)

Figure 1:FLOPs (left) and wall-clock time (right) of computing the NTK for a 10-layer ReLU
FCN. As predicted by Table 3, our methods almost always outperform Jacobian contraction, allow-
ing orders of magnitude speed-ups and memory improvements (missing points are out-of-memory).

Figure 2: Wall-clock time cost of computing an NTK for several ResNet sizes on a pair of
ImageNet inputs. Structured derivatives allow the NTK to be computed faster and for larger models
(see bottom row – missing points indicate out-of-memory error). NTK-vector products, as predicted
by Table 1, are advantageous for largeO (bottom row), but also scale worse withFP than other
methods, which is especially noticeable in CNNs.
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Appendix

A Additional �gures

CPU (Skylake) NVIDIA V100

TPUv4 NVIDIA P100

Figure 3:Wall-clock time of computing NTK of a 10-layer ReLU FCN on different platforms.
In all settings, Structured derivatives allow orders of magnitude improvement in wall-clock time
and memory (missing points indicate out-of-memory error). However, we remark that on GPU
platforms (right), NTK-vector products deliver a robust improvement only for largeO (rightmost
column), while forO = 16 the cost is comparable or even larger than Jacobian contraction. See
Fig. 1 for FLOPs andTPUv3 platform. See §K for details.
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Figure 4:Wall-clock time per input pair of computing NTK on various ImageNet models like
Vision Tansformers and hybrids [2, 3], WideResNets [4] and MLP-Mixers [5].
Structured derivatives generally allow fastest computaiton, but are also able to process more models
due to lower memory requirements (lower left; missing points indicate out-of-memory error). For
the case of single output logitO = 1 (top row), NTK-vector products are generally detrimental
due to costly forward passFP relative to the size of parametersP (i.e. a lot of weight sharing; see
Table 1). However, since NTK-vector products scale well with output size, forO = 1000 (bottom
row), they perform comparably or better than other methods.
Finally, we remark that Jacobian not only runs out of memory faster, but can also take more time to
compute. We conjecture that due to a larger memory footprint, XLA can sometimes perform opti-
mizations that trade off speed for memory, and therefore compute the Jacobian in a less optimal way
than if it had more memory available. Alternatively, XLA could also be performing simpli�cations
of the NTK expression in these cases, such that those would not be possible in Jacobian computation
alone.
See Fig. 2 for ResNets, and §K for details.

Figure 5:Notation used in main text, §I (FCN, top) and §J (CNN, bottom).For FCN,D = F = 1 .
For CNN,D = 8 , F = 3 , and the penultimate layer is global average pooling.
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