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Deep ensembles offer reduced generalization error and improved predictive uncertainty estimates.
These performance gains are attributed to functional diversity among the component models that
make up the ensembles: ensemble performance increases with the diversity of the components. A
standard way to generate a diversity of components is to train multiple networks on the same data,
using different minibatch orders, augmentations, etc. In this work, we focus on how and when this
type of diversity in the learned predictor decreases throughout training.

In order to study the diversity of networks still accessible via SGD after t iterations, we first train a
single network for t iterations, then duplicate the state of the optimizer and finish the remainder of
training k times, with independent randomness (minibatches, augmentations, etc) for each duplicated
network. The result is k distinct networks whose training has been coupled for t iterations. We use
this methodology—recently exploited for k = 2 to study linear mode connectivity—to construct a
novel probe for studying diversity.

We find that coupling k for even a few epochs severely restricts the diversity of functions accessible
by SGD, as measured by the KL divergence between the predicted label distributions as well as the
calibration and test error of k-ensembles. We also find that the number of forgetting events [1] drops
off rapidly.

The amount of independent training time decreases with coupling time t however. To control for this
confounder, we study extending the number of iterations of high-learning-rate optimization for an
additional t iterations post-coupling. We find that this does not restore functional diversity.

We also study how functional diversity is affected by retraining after reinitializing the weights in some
layers. We find that we recover significantly more diversity by reinitializing layers closer to the input
layer, compared to reinitializing layers closer to the output. In this case, we see that reinitialization
upsets linear mode connectivity. This observation agrees with the performance improvements seen by
architectures that share the core of a network but train multiple instantiations of the input layers [2].

1 Functional diversity and neural network training
Preliminaries. We work with neural network models trained on standard image classification
datasets. The main results are presented for a ResNet-20 trained on CIFAR-10 but we obtain similar
results on a ResNet-50 and a vision transformer on Tiny-Imagenet. Given K individual predictors, we
define the K-ensemble as the predictor that averages predicted class probabilities over these individual
predictors, or components. To measure ensemble performance, we use test error as well as mean
average calibration error (MACE) [3].

Functional Diversity. It is well known that random initialization, minibatch order, and GPU
nondeterminism cause SGD to produce different predictors across runs [4, 5]. We identify different
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(a) Accuracy gain

in
it

to
 4

31

to
 8

78

to
 1

25
4

to
 1

79
1

to
 2

55
8

to
 3

65
4

0.015

0.020

5-
en

se
m

bl
e 

ac
c.

 g
ai

n
ov

er
 m

ea
n 

of
 m

em
be

rs

no_coupling

(b) Accuracy gain (extended training)
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(c) MACE improvement
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(d) MACE improvement (extended train-
ing)
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(e) KLD, same parent
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(f) KLD, between parents
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(g) Mean forgetting events
by epoch
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(h) Cumulative forgetting events
by spawn time
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(i) Accuracy gain, re-initializing
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(j) MACE, re-initializing

Figure 1: First row: Diminishing accuracy gain (a, b) and calibration error (c, d) as measured by MACE (lower
is better), as we increase coupling time t in coupled-to-t and coupled-to-t-reset (named extended training
in the plot) conditions. Second row: (e) The sym. KL divergence (computed point-wise and averaged) between
components sampled from coupled-to-t-reset condition. (f) sym. KL divergence between two 10-ensembles
that do not share the coupled part in coupled-to-t-reset condition. (g) Average number of forgetting events
per epoch (on the test set) in 10 training runs with different data orders. (h) Cumulative forgetting events (on the
test set) over the first 50 epochs after coupling. Third row: Diminishing accuracy gain (i) and calibration error (j)
as we reinitialize a diminishing percentage of the network’s parameters starting from low (blue) or high (orange)
layers. The shaded area is ± standard deviation.

regimes of interest based on previous work that introduce the most variability in the learned predictors,
based on the disagreement on the test data prediction errors.

We group learned components (neural network predictors) based on the induced distributions on the
weights, as we condition on some of the algorithm inputs. We define the following conditions:

• no-coupling: components are trained with fully independent training runs for T iterations with
the same optimizer settings, but different initializations and mini-batch orders;

• coupled-order: as above, but share the same mini-batches;

• coupled-to-t: the initialization and the first t mini-batches are shared. From t +1 onwards the
mini-batches differ. Trained for T iterations total. A special case t = 0 means that only the random
init is shared;

• coupled-to-t-reset: init and the first t mini-batches are shared. At t +1, reset the optimiser
(momentum and learning rate schedule), then train for another T iterations different mini-batch
order. Each component is trained for T + t iterations.

The coupled-to-t-reset condition is our main focus in the experimental sections below. Under this
condition we eliminate the confounder of a decreased learning time after coupling, while minimally
affecting the performance of the components in our ensembles.

2 The effect of coupling on ensemble performance

We begin by examining how various coupling conditions affect the performance of K-ensembles.
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One basic finding is that the coupled-order and no-coupling conditions achieve indistinguishable
performance in error and MACE. This, in turn, suggests that resampling initializations plays a key role
in obtaining the type of diversity among predictors that is useful for improving ensemble accuracy.

Looking closely at Fig. 1a, we see that coupling the first t iterations of training decreases ensemble
performance as t increases. One could argue that this decrease may be the result of a decrease in
the training time at a high learning rate. To test this hypothesis, we replicate the experiment with
coupled-to-t-reset condition, thus treating the spawning time t as if it were a new initialization,
resetting the learning rate schedule and training time (”extended training”).

The results from this replication (Fig. 1b) confirm that increased coupling hurts ensemble performance,
even under this new condition with extended training times. Further, we rule out another possibility:
that these modified training routines produce predictors with inferior performance ( Fig. 2 ). One may
interpret these experiments as suggesting that training neural networks from a pre-trained initialization
(i.e., weights obtained after coupling for t iterations), narrows the diversity of functions accessible to
SGD and its variants in a way that hurts ensemble accuracy.

In summary, training neural networks from a pre-trained initialization indeed narrows the diversity
of functions accessible to SGD and its variants in a way that hurts ensemble accuracy. Increased
coupling time means that the components are sampled within the same linearly connected mode. Thus
our results provide evidence that two linearly connected modes represent a distinct set of functions.

We next measure the difference of predicted label distributions between components sampled from
coupled-to-t-reset condition. Fig. 1f shows that, with increased coupling time, the symmetric KL
divergence between predicted class probability vectors decreases throughout training, most rapidly
at the start of training. Another anticipated effect of the decrease in diversity is that the resulting
ensembles themselves should become less similar as the coupling time increases. This is indeed what
we observe in Fig. 1f. Each ensemble consists of components trained from a fixed parent, but the
parents are not shared between the two ensembles. Thus for different parents, the ensembles formed
by their respective children are becoming more dissimilar in their predictions with spawning time.

2.1 Early training dynamics

Toneva et al. [1] define a forgetting event of an input (x,y) as an event when a gradient update during
learning causes the 0–1 loss on (x,y) to increase from 0 to 1. Based on this definition, an example is
assigned a forgetting score which is (a lower bound on1) the number of forgetting events during the
training run. A large number of forgetting events over a training/test set illustrates that the decision
boundary varies greatly and is being determined. Fig. 1g demonstrates that the total number of
forgetting events (averaged over 10 runs) on the test set drops off rapidly early in training and then
plateaus when training at a constant learning rate. Subsequent drops are aligned with learning rate
drops.

In Fig. 1h, we visualize the forgetting scores summed over the test set, averaged over components
sampled from coupled-to-t-reset condition. Note that for any coupling time t, the training time
over which the forgetting events are summed over is the same (from coupling epoch t until the end of
training). However, since the number of forgetting events drops off rapidly during the initial epochs
of training, we also see a rapid drop in cumulative forget events with coupling time. We hypothesize
that in the regions of interest (around the test points), the decision boundary is somewhat determined
early in training and has smaller fluctuations with further training.

3 Layer reinitialization as a way to restore functional diversity

In Section 2 we showed how any non-trivial amount of coupling hurts ensemble performance. Here
we ask whether reinitializing a fraction of a partially trained network’s weights (after coupling) and
then proceeding with training multiple copies with different minibatch orders can restore functional
diversity improving ensemble accuracy and calibration.

We reinitialize a fraction of the weights of network trained up to time t. The weights to reinitialize
are chosen by one of the following two ways: low, meaning that we start with the weights closest to
the input, with increasing percentage we move in the direction of the forward pass; high, meaning

1The forgetting events are only tracked when the example appears in the minibatch during training, and thus
the final forgetting score is actually a lower bound on the total number of forgetting events.
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that we start with the weights closest to the output, and with increasing reinitialization percentage we
travel down the backward pass.

Fig. 1i reveals that reinitializing low layers restores significantly more diversity accessible via SGD.
However, one needs to reinitialize nearly half of the network (≈ 40%) in order to approach the
same ensemble accuracy as under no-coupling condition. As seen in Fig. 1j, the effect on model
calibration seems to be insignificant. Interestingly, reinitializing the weights also restores the error
barrier [6] on the linear path between trained components (Fig. 3).

Our observations also shed some light on why multi-input-multi-output (MIMO) architecture, pro-
posed by [2] works well for nearly matching ensemble performance: MIMO has independent low
layers, that are effectively trained with different minibatch orders.
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Figure 2: Individual accuracy of all models and
conditions (including spawn times). Confirms that
we do not observe any performance gap in distri-
bution between coupled init and coupled-to-t for
later values of t.
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Figure 3: Average error barrier between two child
models with a different amount of parameters reini-
tialized at coupling time t. The blue dots represent
no reinitialization. We observe that reinitializing
even a small percentage of the weights at time t
results in a large expected error barrier between
models sharing most of their weights at t.
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