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Abstract

Active learning has recently gained attention in deep learning tasks dedicated to
autonomous driving, such as image classification. However, semantic segmentation
for point clouds remains a largely unexplored task in active learning, mainly due
to the heavy computational cost of such work. In this paper, we present an analysis
to reduce data redundancy in the large-scale dataset Semantic-Kitti [Sl], thanks to
active learning uncertainty-based methods and data augmentation. We are able to
demonstrate that data augmentation techniques are helping our active learning
cycles, and achieve baseline accuracy with only 60% of the dataset.

1 Introduction

Autonomous driving has witnessed a recent increase in research and industry-based large-scale
datasets in the point cloud domain such as Semantic-KITTI and Nuscenes. These datasets enable
diverse driving scenarios and lighting conditions, along with variation in the poses of on-road
obstacles. The collection procedure frequently involves recording temporal segments with key frames
that are manually selected. These large-scale point clouds datasets have high redundancy, mainly
due to the temporal correlation between point clouds scans, the similar urban environments and the
symmetries in the driving environment (driving in opposite directions at the same location). Hence,
data redundancy can be as seen missing information to improve the model due to the similarity
between point clouds resulting from geometric transformations as a consequence of ego-vehicle
movement along with changes in the environment. Data augmentations (DA) are transformations on
the input samples that enable DNNs to learn invariances and/or equivariances to said transformations
[1]. DA provides a natural way to model the geometric transformations to point clouds in large-scale
datasets due to ego-motion of the vehicle.

Active Learning (AL) aims at interactively annotating unlabeled samples guided by a human expert
in the loop. For large datasets, AL can be used to find a core-subset with equivalent performance
w.r.t a full dataset. This involves sequentially selecting subsets of the dataset that greedily maximises
model performance. AL helps distills an existing dataset to a smaller subset, thus enabling faster
training times in production, while preserving high accuracy. It uses uncertainty scores obtained from
predictions of a model or an ensemble to select informative new samples to be annotated by a human
oracle. This paper studies the dataset distillation or reduction of redundant samples on point clouds
from the Semantic-KITTI dataset. Contributions of the current study include:

1. Evaluating existing heuristic function, BALD [14] for the semantic segmentation task within
a standardized AL library [3]. BALD in conjunction with DA techniques shows a high
labeling efficiency on a 6000 samples subset of the Semantic-KITTI dataset.

2. Key ablation studies on informativeness of dataset samples vs data augmented samples that
reflect how DA affect the quality of AL based sampling/acquisition function.

3. A competitive compression over the baseline accuracy while using only 60% of the dataset.
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Like many previous studies on AL, we do not explicitly quantify the amount of redundancy in the
datasets and purely determine the trade-off of model performance with smaller subsets w.r.t the
original dataset.

1.1 Related work

The reader can find details on the major approaches to AL in the following articles: uncertainty-based
approaches [[10], diversity-based approaches [19], and a combination of the two [17][2]]. Most
of these studies were aimed at classification tasks. Adapting diversity-based frameworks usually
applied to a classification, such as [19], [17], [2], to the point cloud semantic segmentation task is
computationally costly. This is due to the dense output tensor from DNNs with a class probability
vector per pixel, while the output for the classification task is a single class probability vector per
image. Various authors in [[16][[12], Camvid and Cityscapes propose uncertainty-based methods for
image and video segmentation. However, very few AL studies are conducted for point cloud semantic
segmentation. Authors [22] evaluate uncertainty and diversity-based approaches for point cloud
semantic segmentation. This study is the closest to our current work.

Authors [[6] demonstrate the existence of redundancy in CIFAR-10 and ImageNet datasets, using
agglomerative clustering in a semantic space to find redundant groups of samples. As shown by
[8]], techniques like ensemble active learning can reduce data redundancy significantly on image
classification tasks. Authors [4] show that diversity-based methods are more robust compared to
standalone uncertainty methods against highly redundant data. Though authors suggest that with the
use of DA, there is no significant advantage of diversity over uncertainty sampling. Nevertheless, the
uncertainty was not quantified in the original studied datasets, but were artificially added through
sample duplication. This does not represent real word correlation between sample images or point
clouds. Authors [13]] uses DA techniques while adding the consistency loss within a semi-supervised
learning setup for image classification task.

2 Method

In this section, we will describe our setup used to evaluate the performances of active learning for
point clouds semantic segmentation, including details on the dataset and model used, the chosen data
augmentations techniques, and the most important, details on our active learning experiments.

2.1 Dataset

Although there are many open-source datasets for image semantic segmentation, not many of them
are dedicated to semantic segmentation on point clouds. The Semantic-KITTI dataset & benchmark
[S] provides more than 43000 point clouds of 22 annotated sequences, acquired with a Velodyne
HDL-64 LiDAR. Semantic-KITTI is by far the most extensive dataset with sequential information.
All available annotated point clouds, from sequences 00 to 10, for a total of 23201 point clouds, are
later used for our experiments.

2.2 Model

Among different deep learning models available, we choose SqueezeSegV?2 [21]], a spherical-
projection-based semantic segmentation model, which performs well with a fast inference speed
compared to other architectures, thus reduces training and uncertainty computation time. We apply
spherical projection [21]] on point clouds to obtain a 2D range image as an input for the network
shown in figure[l] To simulate Monte Carlo (MC) sampling for uncertainty estimation [9], a 2D
Dropout layer is added right before the last convolutional layer of SqueezeSegV2 with a probability
of 0.2 and turned on at test time.

2.3 Spherical projection: Converting pointcloud to range images

Rangenet++ architectures by authors [18]] use range image based spherical coordinate representations
of point clouds to enable the use of 2D-convolution kernels. The relationship between range image



and LiDAR coordinates is the following:
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where (U; V) are image coordinates, (h; w) the height and width of the desired range image, T =
fup + Faown , is the vertical fov of the sensor, and r = = X2 +y? + 72, range measurement of
each point. The input to the DNNs used in our study are images of size W H 4, with spatial

dimensions W; H determined by the FOV and angular resolution, and 4 channels containing the X; y
coordinates of points, r range or depth to each point, i intensity or remission value for each point.
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Figure 1: Global flow of active learning on range images from point clouds using uncertainty methods.

2.4 Bayesian uncertainty-based approach of active learning

In a supervised learning setup, given a dataset D := F(X1;y1); (X2;y2);: i (Xnyn)g X Y,
the DNN is seen as a high dimensional function f;, : X ¥ Y with model parameters 1. A
simple classifier maps each input X to outcomes Y. A good classifier minimizes the empirical risk
I:Y Y ¥ R, which is defined with the expectation Remp () := Px;y [Y & T(X)]. The optimal
classifier is one that minimizes the above risk. Thus, the classifier’s loss does not explicitly refer to
sample-wise uncertainty but rather to obtain a function which makes good predictions on average.

Predictive uncertainty [15]] estimates uncertainty over each prediction § = f, (x) = p(yjx) given its
input X. A model’s predictive uncertainty is a combination of the aleatoric uncertainty, irreducible
uncertainty due to intrinsic randomness of underlying process, and the epistemic uncertainty, reducible
uncertainty caused due to missing knowledge, and could be reduced given additional information.

Authors [9] propose generation of MC samples for a given model and input, by activating standard
dropout layers at inference time. This provides an uncertainty estimation by sampling different values
of DNN weights. Readers can consult work by [[11] for uncertainty estimation in DNNs.

We summarize here the key components of the bayesian AL framework:

1. Labeled dataset D = (X;;y;)g.; where X; 2W H 4 are range images with 4 input
channels, W; H are spatial dimensions, andy; 2W H  C are one-hot encoded ground
truth with C classes. The output of the DNN model is distinguished from the ground truth
as Y with the same dimensions.

2. Partition of the dataset into Labeled pool L D and a unlabeled poolU D considered
as a data with/without any ground-truth, where at any AL-step L [ U = D, the subsets are
disjoint and restore the full dataset.

3. Query size B, also called a budget, to fix the number of unlabeled samples selected for
labeling

4. Acquisition function, known as heuristic, providing a score for each pixel given the output
% of the DNN model, f : RW H C 1 RW H

5. Including the usage of MC iterations the output of the DNN model could provide several
outputs given the same model and input, § 2W H C T where T refers to the number
of MC iterations.

6. Subset model T is the model trained on labeled subset L

7. Aggregation functiona : RW H C T ® R isa function that aggregates heuristic scores
across all pixels in the input image into a positive scalar value, which is used to rank samples
in the unlabeled pool.
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